Recursive Confidence Training for Pseudo-Labeling Calibration in Semi-Supervised Few-Shot Learning

Semi-Supervised Few-Shot Learning (SSFSL) aims to address the data scarcity in few-shot learning by leveraging both a few labeled support data and abundant unlabeled data. In SSFSL, a classifier trained on scarce support data is often biased and thus assigns inaccurate pseudo-labels to the unlabeled...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2025) vom: 16. Mai
1. Verfasser: Jing, Kunlei (VerfasserIn)
Weitere Verfasser: Ma, Hebo, Zhang, Chen, Wen, Lei, Zhang, Zhaorui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM388631376
003 DE-627
005 20250714100855.0
007 cr uuu---uuuuu
008 250714s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3569196  |2 doi 
028 5 2 |a pubmed25n1410.xml 
035 |a (DE-627)NLM388631376 
035 |a (NLM)40378021 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jing, Kunlei  |e verfasserin  |4 aut 
245 1 0 |a Recursive Confidence Training for Pseudo-Labeling Calibration in Semi-Supervised Few-Shot Learning 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.05.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Semi-Supervised Few-Shot Learning (SSFSL) aims to address the data scarcity in few-shot learning by leveraging both a few labeled support data and abundant unlabeled data. In SSFSL, a classifier trained on scarce support data is often biased and thus assigns inaccurate pseudo-labels to the unlabeled data, which will mislead downstream learning tasks. To combat this issue, we introduce a novel method called Certainty-Aware Recursive Confidence Training (CARCT). CARCT hinges on the insight that selecting pseudo-labeled data based on confidence levels can yield more informative support data, which is crucial for retraining an unbiased classifier to achieve accurate pseudo-labeling-a process we term pseudo-labeling calibration. We observe that accurate pseudo-labels typically exhibit smaller certainty entropy, indicating high-confidence pseudo-labeling compared to those of inaccurate pseudo-labels. Accordingly, CARCT constructs a joint double-Gaussian model to fit the certainty entropies collected across numerous SSFSL tasks. Thereby, A semi-supervised Prior Confidence Distribution (ssPCD) is learned to aid in distinguishing between high-confidence and low-confidence pseudo-labels. During an SSFSL task, ssPCD guides the selection of both high-confidence and low-confidence pseudo-labeled data to retrain the classifier that then assigns more accurate pseudo-labels to the low-confidence pseudo-labeled data. Such recursive confidence training continues until the low-confidence ones are exhausted, terminating the pseudo-labeling calibration. The unlabeled data all receive accurate pseudo-labels to expand the few support data to generalize the downstream learning task, which in return meta-refines the classifier, named self-training, to boost the pseudo-labeling in subsequent tasks. Extensive experiments on basic and extended SSFSL setups showcase the superiority of CARCT versus state-of-the-art methods, and comprehensive ablation studies and visualizations justify our insight. The source code is available at https://github.com/Klein-JING/CARCT 
650 4 |a Journal Article 
700 1 |a Ma, Hebo  |e verfasserin  |4 aut 
700 1 |a Zhang, Chen  |e verfasserin  |4 aut 
700 1 |a Wen, Lei  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhaorui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2025) vom: 16. Mai  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:16  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3569196  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 16  |c 05