Single-Source Frequency Transform for Cross-Scene Classification of Hyperspectral Image

Currently, the research on cross-scene classification of hyperspectral image (HSI) based on domain generalization (DG) has received wider attention. The majority of the existing methods achieve cross-scene classification of HSI via data manipulation that generates more feature-rich samples. The insu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 26., Seite 3000-3012
1. Verfasser: Huang, Xizeng (VerfasserIn)
Weitere Verfasser: Dong, Yanni, Zhang, Yuxiang, Du, Bo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM388579994
003 DE-627
005 20250714113710.0
007 cr uuu---uuuuu
008 250714s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3568749  |2 doi 
028 5 2 |a pubmed25n1417.xml 
035 |a (DE-627)NLM388579994 
035 |a (NLM)40372857 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Xizeng  |e verfasserin  |4 aut 
245 1 0 |a Single-Source Frequency Transform for Cross-Scene Classification of Hyperspectral Image 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.05.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Currently, the research on cross-scene classification of hyperspectral image (HSI) based on domain generalization (DG) has received wider attention. The majority of the existing methods achieve cross-scene classification of HSI via data manipulation that generates more feature-rich samples. The insufficient mining of complex features of HSIs in these methods leads to limiting the effectiveness of the newly generated HSI samples. Therefore, in this paper, we propose a novel single-source frequency transform (SFT), which realizes domain generalization by transforming the frequency features of samples, mainly including frequency transform (FT) and balanced attentional consistency (BAC). Firstly, FT is designed to learn dynamic attention maps in the frequency space of samples filtering frequency components to improve the diversity of features in new samples. Moreover, BAC is designed based on the class activation map to improve the reliability of newly generated samples. Comprehensive experiments on three public HSI datasets demonstrate that the proposed method outperforms the state-of-the-art method, with accuracy at most 5.14% higher than the second place 
650 4 |a Journal Article 
700 1 |a Dong, Yanni  |e verfasserin  |4 aut 
700 1 |a Zhang, Yuxiang  |e verfasserin  |4 aut 
700 1 |a Du, Bo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 26., Seite 3000-3012  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:26  |g pages:3000-3012 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3568749  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 26  |h 3000-3012