Photothermal-Responsive Aerogel-Hydrogel Binary System for Efficient Water Purification and All-Weather Hydrovoltaic Generation

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 30 vom: 28. Juli, Seite e2501809
Auteur principal: Ming, Zechang (Auteur)
Autres auteurs: Zhang, Jiwei, Li, Weikang, Wang, Shuang, Zhang, Yufan, Lu, Zeren, Zhang, Tao, Zhou, Zijie, Xia, Yong, Zhang, Yue, Zhou, Xinran, Xiong, Jiaqing
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article aerogel‐hydrogel binary system greenhouse ecosystems hydrovoltaic generation photothermal interfacial water evaporation water desalination
LEADER 01000caa a22002652c 4500
001 NLM388361816
003 DE-627
005 20250729234350.0
007 cr uuu---uuuuu
008 250714s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202501809  |2 doi 
028 5 2 |a pubmed25n1510.xml 
035 |a (DE-627)NLM388361816 
035 |a (NLM)40351001 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ming, Zechang  |e verfasserin  |4 aut 
245 1 0 |a Photothermal-Responsive Aerogel-Hydrogel Binary System for Efficient Water Purification and All-Weather Hydrovoltaic Generation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.07.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Hydrovoltaic generators (HVGs) convert abundant water energy into distributed electricity to promote the Internet of Things. Realizing low-cost yet high-performance HVG remains challenging, hindering its commercialization and application. Inspired by the xylem conduits in plants, which transport water and nutrients, an aerogel-hydrogel binary-component system (SHA-HVG) is developed. It consists of a photothermal graphite-doped polyvinylidene fluoride (G-PVDF) aerogel, infilled with a thermosensitive wettability-switchable sulfonic acid-modified polyisopropylacrylamide hydrogel (S-PNIPAM) by in situ polymerization, which significantly promotes water/ion transporting and boosts electricity output. SHA-HVG demonstrates all-weather high output by cooperating power generation mechanisms of thermosensitive hydrogel-promoted surface photothermal evaporation during the daytime and sulfonic group-enhanced ion concentration gradient at nighttime, resulting in efficient water desalination (2.75 kg m-2 h-1) and a 2669% increase in power density (56.86 µW cm-2) compared to single-component HVG of G-PVDF. SHA-HVG is chemically stable and can be reactivated/recycled to improve its power generation efficiency to ∼130% by increasing its built-in ionic environment. A marine/offshore cultivation system is demonstrated using an SHA-HVG array, realizing an autonomous greenhouse for water desalination, self-irrigation, and self-powered environment monitoring. This work presents a cost-effective HVG strategy for efficient seawater desalination and electricity harvesting, envisioning the development of distributed energy, smart agriculture, and offshore planting 
650 4 |a Journal Article 
650 4 |a aerogel‐hydrogel binary system 
650 4 |a greenhouse ecosystems 
650 4 |a hydrovoltaic generation 
650 4 |a photothermal interfacial water evaporation 
650 4 |a water desalination 
700 1 |a Zhang, Jiwei  |e verfasserin  |4 aut 
700 1 |a Li, Weikang  |e verfasserin  |4 aut 
700 1 |a Wang, Shuang  |e verfasserin  |4 aut 
700 1 |a Zhang, Yufan  |e verfasserin  |4 aut 
700 1 |a Lu, Zeren  |e verfasserin  |4 aut 
700 1 |a Zhang, Tao  |e verfasserin  |4 aut 
700 1 |a Zhou, Zijie  |e verfasserin  |4 aut 
700 1 |a Xia, Yong  |e verfasserin  |4 aut 
700 1 |a Zhang, Yue  |e verfasserin  |4 aut 
700 1 |a Zhou, Xinran  |e verfasserin  |4 aut 
700 1 |a Xiong, Jiaqing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 30 vom: 28. Juli, Seite e2501809  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:30  |g day:28  |g month:07  |g pages:e2501809 
856 4 0 |u http://dx.doi.org/10.1002/adma.202501809  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 30  |b 28  |c 07  |h e2501809