Wasserstein Graph Neural Networks for Graphs with Missing Attributes
Missing node attributes pose a common problem in real-world graphs, impacting the performance of graph neural networks' representation learning. Existing GNNs often struggle to effectively leverage incomplete attribute information, as they are not specifically designed for graphs with missing a...
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 08. Mai |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2025
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
Sujets: | Journal Article |
Accès en ligne |
Volltext |