Cafe : Improved Federated Data Imputation by Leveraging Missing Data Heterogeneity

Federated learning (FL), a decentralized machine learning approach, offers great performance while alleviating autonomy and confidentiality concerns. Despite FL's popularity, how to deal with missing values in a federated manner is not well understood. In this work, we initiate a study of feder...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on knowledge and data engineering. - 1998. - 37(2025), 5 vom: 28. Mai, Seite 2266-2281
Auteur principal: Min, Sitao (Auteur)
Autres auteurs: Asif, Hafiz, Wang, Xinyue, Vaidya, Jaideep
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on knowledge and data engineering
Sujets:Journal Article Data Heterogeneity Data Quality Federated Learning Missing Data Imputation
LEADER 01000naa a22002652c 4500
001 NLM38795435X
003 DE-627
005 20250509190702.0
007 cr uuu---uuuuu
008 250509s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TKDE.2025.3537403  |2 doi 
028 5 2 |a pubmed25n1396.xml 
035 |a (DE-627)NLM38795435X 
035 |a (NLM)40322292 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Min, Sitao  |e verfasserin  |4 aut 
245 1 0 |a Cafe  |b Improved Federated Data Imputation by Leveraging Missing Data Heterogeneity 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.05.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Federated learning (FL), a decentralized machine learning approach, offers great performance while alleviating autonomy and confidentiality concerns. Despite FL's popularity, how to deal with missing values in a federated manner is not well understood. In this work, we initiate a study of federated imputation of missing values, particularly in complex scenarios, where missing data heterogeneity exists and the state-of-the-art (SOTA) approaches for federated imputation suffer from significant loss in imputation quality. We propose Cafe, a personalized FL approach for missing data imputation. Cafe is inspired from the observation that heterogeneity can induce differences in observable and missing data distribution across clients, and that these differences can be leveraged to improve the imputation quality. Cafe computes personalized weights that are automatically calibrated for the level of heterogeneity, which can remain unknown, to develop personalized imputation models for each client. An extensive empirical evaluation over a variety of settings demonstrates that Cafe matches the performance of SOTA baselines in homogeneous settings while significantly outperforming the baselines in heterogeneous settings 
650 4 |a Journal Article 
650 4 |a Data Heterogeneity 
650 4 |a Data Quality 
650 4 |a Federated Learning 
650 4 |a Missing Data Imputation 
700 1 |a Asif, Hafiz  |e verfasserin  |4 aut 
700 1 |a Wang, Xinyue  |e verfasserin  |4 aut 
700 1 |a Vaidya, Jaideep  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on knowledge and data engineering  |d 1998  |g 37(2025), 5 vom: 28. Mai, Seite 2266-2281  |w (DE-627)NLM09822915X  |x 1041-4347  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:5  |g day:28  |g month:05  |g pages:2266-2281 
856 4 0 |u http://dx.doi.org/10.1109/TKDE.2025.3537403  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 5  |b 28  |c 05  |h 2266-2281