Deep learning and its applications in nuclear magnetic resonance spectroscopy

Copyright © 2024 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Progress in nuclear magnetic resonance spectroscopy. - 1998. - 146-147(2025) vom: 01. Apr., Seite 101556
1. Verfasser: Luo, Yao (VerfasserIn)
Weitere Verfasser: Zheng, Xiaoxu, Qiu, Mengjie, Gou, Yaoping, Yang, Zhengxian, Qu, Xiaobo, Chen, Zhong, Lin, Yanqin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Progress in nuclear magnetic resonance spectroscopy
Schlagworte:Journal Article Review Deep learning In vivo magnetic resonance spectroscopy (MRS) Nano nuclear magnetic resonance (NanoNMR) Nuclear magnetic resonance (NMR)
LEADER 01000naa a22002652c 4500
001 NLM387789561
003 DE-627
005 20250508233051.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.pnmrs.2024.101556  |2 doi 
028 5 2 |a pubmed25n1392.xml 
035 |a (DE-627)NLM387789561 
035 |a (NLM)40306798 
035 |a (PII)S0079-6565(24)00031-1 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luo, Yao  |e verfasserin  |4 aut 
245 1 0 |a Deep learning and its applications in nuclear magnetic resonance spectroscopy 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright © 2024 Elsevier B.V. All rights reserved. 
520 |a Nuclear Magnetic Resonance (NMR), as an advanced technology, has widespread applications in various fields like chemistry, biology, and medicine. However, issues such as long acquisition times for multidimensional spectra and low sensitivity limit the broader application of NMR. Traditional algorithms aim to address these issues but have limitations in speed and accuracy. Deep Learning (DL), a branch of Artificial Intelligence (AI) technology, has shown remarkable success in many fields including NMR. This paper presents an overview of the basics of DL and current applications of DL in NMR, highlights existing challenges, and suggests potential directions for improvement 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Deep learning 
650 4 |a In vivo magnetic resonance spectroscopy (MRS) 
650 4 |a Nano nuclear magnetic resonance (NanoNMR) 
650 4 |a Nuclear magnetic resonance (NMR) 
700 1 |a Zheng, Xiaoxu  |e verfasserin  |4 aut 
700 1 |a Qiu, Mengjie  |e verfasserin  |4 aut 
700 1 |a Gou, Yaoping  |e verfasserin  |4 aut 
700 1 |a Yang, Zhengxian  |e verfasserin  |4 aut 
700 1 |a Qu, Xiaobo  |e verfasserin  |4 aut 
700 1 |a Chen, Zhong  |e verfasserin  |4 aut 
700 1 |a Lin, Yanqin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Progress in nuclear magnetic resonance spectroscopy  |d 1998  |g 146-147(2025) vom: 01. Apr., Seite 101556  |w (DE-627)NLM098212745  |x 1873-3301  |7 nnas 
773 1 8 |g volume:146-147  |g year:2025  |g day:01  |g month:04  |g pages:101556 
856 4 0 |u http://dx.doi.org/10.1016/j.pnmrs.2024.101556  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 146-147  |j 2025  |b 01  |c 04  |h 101556