Rational Design of a Bilayer Interface for Long-Term Stability of Zn Anodes and MnO2 Cathodes

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 28. Apr., Seite e2502366
1. Verfasser: Zhu, Kaiping (VerfasserIn)
Weitere Verfasser: Zhuang, Wubin, Wang, Nanyang, Zhang, Kai, Lin, Lin, Shao, Zhipeng, Li, Chaowei, Wang, Wenhui, Liu, Shizhuo, Yang, Peng, Xue, Pan, Zhang, Qichong, Hong, Guo, Yao, Yagang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bilayer electrode–electrolyte interface dendrite‐free Zn anode optimized solvation structure reconstructed inner helmholtz plane stable MnO2 cathode
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
Understanding the composition-characteristics-performance relationship of the electrolyte-electric double layer-electrode-electrolyte interface (EEI) is crucial to construct stable EEIs for high-performance aqueous Zn-MnO2 batteries (AZMBs). However, the interaction mechanisms in AZMBs remain unclear. This work introduces sodium thioctate (ST) into ZnSO4 electrolyte to construct a stable bilayer EEI on both Zn and MnO2 electrodes. First, zincophilic ST regulates the solvation structure of hydrated Zn2+, suppressing corrosion and the hydrogen evolution reaction. Second, the specific adsorption of ST reconstructs the inner Helmholtz plane, facilitating the desolvation of hydrated Zn2+ and homogenizing charge distribution. Finally, ST molecules undergo reversible polymerization at the interface, forming a stable bilayer EEI with a poly(zinc thioctate) outer layer and a ZnS-organic amorphous inner layer, which ensures uniform zinc-ion flux and enhances mechanical stability. Additionally, the dynamic disulfide bonds in ST further enable self-regulation and self-healing of the interface, mitigating damage during cycling. As a result, the ST-enhanced Zn symmetric battery achieves 7800 cycles at 60 mA cm-2, while the AZMB exhibits only 0.0014% capacity decay over 10 000 cycles at 2000 mA g-1. This bilayer EEI engineering strategy offers effective guidance for the rational design of safe and long-life aqueous zinc-ion batteries
Beschreibung:Date Revised 29.04.2025
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202502366