Narrow-Linewidth Emission and Weak Exciton-Phonon Coupling in 2D Layered Germanium Halide Perovskites

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 28. Apr., Seite e2419879
Auteur principal: VanOrman, Zachary A (Auteur)
Autres auteurs: Savinson, Benjamin, Deshpande, Tejas, Gilley, Isaiah W, Scopelliti, Rosario, Reponen, Antti-Pekka M, Kanatzidis, Mercouri G, Sargent, Edward H, Voznyy, Oleksandr, Feldmann, Sascha
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article germanium halide perovskites lead‐free perovskites light‐emitting materials metal halide semiconductors optoelectronics photophysics
Description
Résumé:© 2025 Wiley‐VCH GmbH.
The photophysical properties of low-dimensional metal-halide semiconductors and their tunability make them promising candidates for light-absorbing and emitting applications. Yet, the germanium-based halide perovskites to date lack desirable light-emitting properties, with so far only very broad, weak, and unstructured photoluminescence (PL) reported due to significant octahedral distortion. Here, the photophysical properties of the 2D layered Ruddlesden-Popper semiconductors (4F-PMA)2GeI4 and (4F-PMA)2PbI4 (4F-PMA: 4-F-phenylmethylammonium) are characterized and compared. Using a combination of single-crystal X-ray diffraction, variable temperature time-resolved PL, and density functional theory, structure-property relations are correlated. Specifically, the results indicate that (4F-PMA)2PbI4 features stronger coupling to longitudinal optical (LO) phonons, assisting emission from a broad bound-exciton state due to a soft, deformable lattice. In contrast, (4F-PMA)2GeI4, benefitting from intermolecular bonding to scaffold a rigid octahedral structure, shows weaker LO-phonon coupling, resulting in the longest PL lifetime and most narrow linewidth (≈120 meV linewidth at 2 K) reported for a Ge-halide perovskite yet, without the occurrence of any additional bound-state emission at low temperatures. These results highlight the potential of germanium halide perovskite materials for optoelectronic applications
Description:Date Revised 28.04.2025
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202419879