Scale-Aware Crowd Counting Network With Annotation Error Modeling
Traditional crowd-counting networks suffer from information loss when feature maps are reduced by pooling layers, leading to inaccuracies in counting crowds at a distance. Existing methods often assume correct annotations during training, disregarding the impact of noisy annotations, especially in c...
Description complète
Détails bibliographiques
| Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 08., Seite 2750-2764
|
| Auteur principal: |
Hsieh, Yi-Kuan
(Auteur) |
| Autres auteurs: |
Hsieh, Jun-Wei,
Li, Xin,
Zhang, Yu-Ming,
Tseng, Yu-Chee,
Chang, Ming-Ching |
| Format: | Article en ligne
|
| Langue: | English |
| Publié: |
2025
|
| Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
| Sujets: | Journal Article |