Scale-Aware Crowd Counting Network With Annotation Error Modeling

Traditional crowd-counting networks suffer from information loss when feature maps are reduced by pooling layers, leading to inaccuracies in counting crowds at a distance. Existing methods often assume correct annotations during training, disregarding the impact of noisy annotations, especially in c...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 08., Seite 2750-2764
Auteur principal: Hsieh, Yi-Kuan (Auteur)
Autres auteurs: Hsieh, Jun-Wei, Li, Xin, Zhang, Yu-Ming, Tseng, Yu-Chee, Chang, Ming-Ching
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article