Modulating the Photocatalytic Capability of Organic Small Molecule Semiconductors for the Degradation of Different Antibiotics via Self-Assembly and Inorganic Hybridization

This study introduces a perylene diimide (PDI) small molecule in the photocatalytic degradation of antibiotics for the first time. Initially, we optimized its photoelectric performance through self-assembly to obtain an n-type photocatalyst (SA-PDI). Subsequently, WO3 and Cu2O were incorporated usin...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 41(2025), 15 vom: 22. Apr., Seite 10052-10064
Auteur principal: Tang, Sirou (Auteur)
Autres auteurs: Li, Ling, Zha, Keyu, Lu, Qiuting, Pang, Youyong, Hai, Jiefeng, Fan, Dayong, Li, Ming, Liu, Yongping, Lu, Zhenhuan
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article Anti-Bacterial Agents Copper 789U1901C5 Perylene 5QD5427UN7 Imides Tungsten V9306CXO6G perylenediimide plus... Oxides Ciprofloxacin 5E8K9I0O4U Tetracycline F8VB5M810T tungsten oxide 940E10M08M Norfloxacin N0F8P22L1P
LEADER 01000caa a22002652c 4500
001 NLM387321977
003 DE-627
005 20250509134606.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.5c01453  |2 doi 
028 5 2 |a pubmed25n1382.xml 
035 |a (DE-627)NLM387321977 
035 |a (NLM)40219989 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tang, Sirou  |e verfasserin  |4 aut 
245 1 0 |a Modulating the Photocatalytic Capability of Organic Small Molecule Semiconductors for the Degradation of Different Antibiotics via Self-Assembly and Inorganic Hybridization 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.04.2025 
500 |a Date Revised 22.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This study introduces a perylene diimide (PDI) small molecule in the photocatalytic degradation of antibiotics for the first time. Initially, we optimized its photoelectric performance through self-assembly to obtain an n-type photocatalyst (SA-PDI). Subsequently, WO3 and Cu2O were incorporated using a facile one-step method to prepare n-n type and n-p type organic-inorganic hybrid photocatalysts (PDI-WO3 and PDI-Cu2O). This approach simultaneously achieved self-assembly, metal ion doping, and inorganic hybridization, further modulating the photocatalytic properties of the materials. Studies indicated that PDI-WO3 operates via a type-II heterojunction mechanism, whereas PDI-Cu2O follows an S-scheme heterojunction mechanism. SA-PDI demonstrated superior degradation efficiency toward tetracycline hydrochloride (TCH), while PDI-WO3 exhibited enhanced activity for both TCH and doxycycline hydrochloride (DOX). In contrast, PDI-Cu2O showed higher efficacy for ciprofloxacin (CIP) and norfloxacin (NOF). These differences in photocatalytic performance are attributed to the distinct active species generated by each catalyst, aligning with the degradation requirements of specific antibiotics. Moreover, since all three materials are based on the PDI molecule, they are inherently compatible. Consequently, we directly mixed these materials to prepare composite photocatalysts for the simultaneous photocatalytic degradation of multiple antibiotics. In a simulated wastewater system, we systematically investigated the effects of inorganic ions, humic acid, and pH on the effectiveness of the composite photocatalysts in treating mixed antibiotic solutions. Ultimately, this study provides novel design strategies for organic-inorganic hybrid materials and demonstrates promising potential for practical applications in mitigating antibiotic contamination in real wastewater systems 
650 4 |a Journal Article 
650 7 |a Anti-Bacterial Agents  |2 NLM 
650 7 |a Copper  |2 NLM 
650 7 |a 789U1901C5  |2 NLM 
650 7 |a Perylene  |2 NLM 
650 7 |a 5QD5427UN7  |2 NLM 
650 7 |a Imides  |2 NLM 
650 7 |a Tungsten  |2 NLM 
650 7 |a V9306CXO6G  |2 NLM 
650 7 |a perylenediimide  |2 NLM 
650 7 |a Oxides  |2 NLM 
650 7 |a Ciprofloxacin  |2 NLM 
650 7 |a 5E8K9I0O4U  |2 NLM 
650 7 |a Tetracycline  |2 NLM 
650 7 |a F8VB5M810T  |2 NLM 
650 7 |a tungsten oxide  |2 NLM 
650 7 |a 940E10M08M  |2 NLM 
650 7 |a Norfloxacin  |2 NLM 
650 7 |a N0F8P22L1P  |2 NLM 
700 1 |a Li, Ling  |e verfasserin  |4 aut 
700 1 |a Zha, Keyu  |e verfasserin  |4 aut 
700 1 |a Lu, Qiuting  |e verfasserin  |4 aut 
700 1 |a Pang, Youyong  |e verfasserin  |4 aut 
700 1 |a Hai, Jiefeng  |e verfasserin  |4 aut 
700 1 |a Fan, Dayong  |e verfasserin  |4 aut 
700 1 |a Li, Ming  |e verfasserin  |4 aut 
700 1 |a Liu, Yongping  |e verfasserin  |4 aut 
700 1 |a Lu, Zhenhuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 41(2025), 15 vom: 22. Apr., Seite 10052-10064  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnas 
773 1 8 |g volume:41  |g year:2025  |g number:15  |g day:22  |g month:04  |g pages:10052-10064 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.5c01453  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 41  |j 2025  |e 15  |b 22  |c 04  |h 10052-10064