Controlled Formation of Skyrmion Bags

© 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 29 vom: 17. Juli, Seite e2501250
1. Verfasser: Kern, Lisa-Marie (VerfasserIn)
Weitere Verfasser: Kuchkin, Vladyslav M, Deinhart, Victor, Klose, Christopher, Sidiropoulos, Themistoklis, Auer, Maike, Gaebel, Simon, Gerlinger, Kathinka, Battistelli, Riccardo, Wittrock, Steffen, Karaman, Tamer, Schneider, Michael, Günther, Christian M, Engel, Dieter, Will, Ingo, Wintz, Sebastian, Weigand, Markus, Büttner, Felix, Höflich, Katja, Eisebitt, Stefan, Pfau, Bastian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article X‐ray imaging higher‐order skyrmions ion irradiation laser‐induced nucleation skyrmion bags
Beschreibung
Zusammenfassung:© 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Topologically non-trivial magnetic solitons are complex spin textures with a distinct single-particle nature. Although magnetic skyrmions, especially those with unity topological charge, have attracted substantial interest due to their potential applications, more complex topological textures remain largely theoretical. In this work, the stabilization of isolated higher-order skyrmion bags beyond the prototypical π-skyrmion in ferromagnetic thin films is experimentally demonstrate, which has posed considerable challenges to date. Specifically, controlled generation of skyrmionium (2π-skyrmion), target skyrmion (3π-skyrmion), and skyrmion bags (with variable topological charge) are achieved through the introduction of artificially engineered anisotropy defects via local ion irradiation. They act as preferential sites for the field- or laser-induced nucleation of skyrmion bags. Remarkably, ultrafast laser pulses achieve a substantially higher conversion rate transforming skyrmions into higher-order skyrmion bags compared to their formation driven by magnetic fields. High-resolution x-ray imaging enables direct observation of the resulting skyrmion bags. Complementary micromagnetic simulations reveal the pivotal role of defect geometry-particularly diameter-in stabilizing closed-loop domain textures. The findings not only broaden the experimental horizon for skyrmion research, but also suggest strategies for exploiting complex topological spin textures within a unified material platform for practical applications
Beschreibung:Date Revised 24.07.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202501250