Key Role of Bridge Adsorbed Hydrogen Intermediate on Pt-Ru Pair for Efficient Acidic Hydrogen Production

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 11. Apr., Seite e2503221
1. Verfasser: Zhao, Hao (VerfasserIn)
Weitere Verfasser: Ni, Baoxin, Pan, Yongyu, Li, YuZe, Li, Jun, Wang, Guoliang, Zou, Zhiqing, Jiang, Kun, Cheng, Qingqing, Zu, Lianhai, Yang, Hui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article PEM water electrolysis Pt atomic chain bridge adsorbed hydrogen co‐crystalline structure hydrogen evolution reaction
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
Atop and multiple adsorbed hydrogen are considered as key intermediates on Pt-group metal for acidic hydrogen evolution reaction (HER), yet the role of bridge hydrogen intermediate (*Hbridge) is consistently overlooked experimentally. Herein, a Pt atomic chain modified fcc-Ru nanocrystal (Pt-Ru(fcc)) is developed with a co-crystalline structure, featuring *Hbridge intermediate bonded on the Pt-Ru pair site. Electrons leap from the pair site to *Hbridge facilitate hydrogen desorption, thus accelerating the Tafel kinetics and ensuring outstanding electrocatalytic performance, with a low overpotential (4.0 mV at 10 mA  cm-2) and high turnover frequency (56.4 H2 s-1 at 50 mV). Notably, the proton exchange membrane water electrolyzer PEMWE with ultra-low loading of 10 ugPt cm-2 shows excellent activity (1.61 V at 1.0 A cm-2) and low average degradation rate (4.0 µV h-1 over 1000 h), significantly outperforming the benchmark Pt/C. Furthermore, the PEMWE-based 80 µm Gore membrane under identical operating conditions requires only 1.54 and 1.58 V to achieve 1.0 and 1.5 A cm-2. This finding highlights the key role of *Hbridge at the Pt-Ru interface in obtaining high HER intrinsic activity and underscores the transformative potential in designing next-generation bimetallic catalysts for clean hydrogen energy
Beschreibung:Date Revised 11.04.2025
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202503221