Unsupervised 3D Point Cloud Completion via Multi-View Adversarial Learning

In real-world scenarios, scanned point clouds are often incomplete due to occlusion issues. The tasks of self-supervised and weakly-supervised point cloud completion involve reconstructing missing regions of these incomplete objects without the supervision of complete ground truth. Current methods e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 31(2025), 10 vom: 02. Sept., Seite 7890-7905
1. Verfasser: Wu, Lintai (VerfasserIn)
Weitere Verfasser: Cheng, Xianjing, Xu, Yong, Zeng, Huanqiang, Hou, Junhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article