Unsupervised 3D Point Cloud Completion via Multi-View Adversarial Learning
In real-world scenarios, scanned point clouds are often incomplete due to occlusion issues. The tasks of self-supervised and weakly-supervised point cloud completion involve reconstructing missing regions of these incomplete objects without the supervision of complete ground truth. Current methods e...
Ausführliche Beschreibung
Bibliographische Detailangaben
| Veröffentlicht in: | IEEE transactions on visualization and computer graphics. - 1996. - 31(2025), 10 vom: 02. Sept., Seite 7890-7905
|
| 1. Verfasser: |
Wu, Lintai
(VerfasserIn) |
| Weitere Verfasser: |
Cheng, Xianjing,
Xu, Yong,
Zeng, Huanqiang,
Hou, Junhui |
| Format: | Online-Aufsatz
|
| Sprache: | English |
| Veröffentlicht: |
2025
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on visualization and computer graphics
|
| Schlagworte: | Journal Article |