Mechanically Enhanced, Environmentally Stable, and Bioinspired Charge-Gradient Hydrogel Membranes for Efficient Ion Gradient Power Generation and Linear Self-Powered Sensing

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 08. Apr., Seite e2417944
1. Verfasser: Yin, Jianyu (VerfasserIn)
Weitere Verfasser: Jia, Peixue, Ren, Ziqi, Zhang, Qixiang, Lu, Wenzhong, Yao, Qianqian, Deng, Mingfang, Zhou, Xubin, Gao, Yihua, Liu, Nishuang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article energy harvesting environmentally stable ion gradient power generation ionic hydrogel self‐powered sensing
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
The soft hydrogel power source is an interesting example of generating electricity from clean energy. However, ion-selective hydrogel membranes in the systems are often limited by low ion selectivity, high membrane resistance, insufficient mass transfer, and ion concentration polarization, resulting in a generally low power output. Inspired by the unique structure of the electric ray's electric organ, a vertically stacked hydrogel artificial electric organ is proposed, aiming to increase the output current to a greater extent. By constructing the charge gradient in ultrathin ion-selective hydrogel membranes, ion transport is accelerated while mitigating the ion concentration polarization. A single hydrogel artificial electric organ achieves high outputs of ≈290 mV and ≈1.46 mA cm-2 with rechargeability, surpassing similar devices. Density functional theory further reveals that the energy barrier of ion transport in charge-gradient membranes is lower than that in nongradient membranes. More impressively, the device can still be applied as a linear self-powered pressure sensor for monitoring human activities after the ion gradient is completely dissipated. This study elucidates the key role of the structure and design of ion-selective membranes in the artificial gel power generation system, providing new insights into the further development and multifunctional application of flexible gel power source
Beschreibung:Date Revised 09.04.2025
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202417944