Stylizing Sparse-View 3D Scenes With Hierarchical Neural Representation

3D scene stylization refers to generating stylized images of the scene at arbitrary novel view angles following a given set of style images while ensuring consistency when rendered from different views. Recently, several 3D style transfer methods leveraging the scene reconstruction capabilities of p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 31(2025), 10 vom: 26. Sept., Seite 7876-7889
1. Verfasser: Wang, Yifan (VerfasserIn)
Weitere Verfasser: Gao, Ang, Gong, Yi, Zeng, Yuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM386681740
003 DE-627
005 20250908232015.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2025.3558468  |2 doi 
028 5 2 |a pubmed25n1561.xml 
035 |a (DE-627)NLM386681740 
035 |a (NLM)40193263 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Yifan  |e verfasserin  |4 aut 
245 1 0 |a Stylizing Sparse-View 3D Scenes With Hierarchical Neural Representation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.09.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a 3D scene stylization refers to generating stylized images of the scene at arbitrary novel view angles following a given set of style images while ensuring consistency when rendered from different views. Recently, several 3D style transfer methods leveraging the scene reconstruction capabilities of pre-trained neural radiance fields (NeRF) have been proposed. To successfully stylize a scene this way, one must first reconstruct a photo-realistic radiance field from collected images of the scene. However, when only sparse input views are available, pre-trained few-shot NeRFs often suffer from high-frequency artifacts, which are generated as a by-product of high-frequency details for improving reconstruction quality. Is it possible to generate more faithful stylized scenes from sparse inputs by directly optimizing encoding-based scene representation with target style? In this paper, we consider the stylization of sparse-view scenes in terms of disentangling content semantics and style textures. We propose a coarse-to-fine sparse-view scene stylization framework, where a novel hierarchical encoding-based neural representation is designed to generate high-quality stylized scenes directly from implicit scene representations. We also propose a new optimization strategy with content strength annealing to achieve realistic stylization and better content preservation. Extensive experiments demonstrate that our method can achieve high-quality stylization of sparse-view scenes and outperforms fine-tuning-based baselines in terms of stylization quality and efficiency 
650 4 |a Journal Article 
700 1 |a Gao, Ang  |e verfasserin  |4 aut 
700 1 |a Gong, Yi  |e verfasserin  |4 aut 
700 1 |a Zeng, Yuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 31(2025), 10 vom: 26. Sept., Seite 7876-7889  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:31  |g year:2025  |g number:10  |g day:26  |g month:09  |g pages:7876-7889 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2025.3558468  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2025  |e 10  |b 26  |c 09  |h 7876-7889