|  |  |  |  | 
| LEADER | 01000caa a22002652c 4500 | 
| 001 | NLM386681740 | 
| 003 | DE-627 | 
| 005 | 20250908232015.0 | 
| 007 | cr uuu---uuuuu | 
| 008 | 250508s2025    xx |||||o     00| ||eng c | 
| 024 | 7 |  | |a 10.1109/TVCG.2025.3558468 
  |2 doi | 
| 028 | 5 | 2 | |a pubmed25n1561.xml | 
| 035 |  |  | |a (DE-627)NLM386681740 | 
| 035 |  |  | |a (NLM)40193263 | 
| 040 |  |  | |a DE-627 
  |b ger 
  |c DE-627 
  |e rakwb | 
| 041 |  |  | |a eng | 
| 100 | 1 |  | |a Wang, Yifan 
  |e verfasserin 
  |4 aut | 
| 245 | 1 | 0 | |a Stylizing Sparse-View 3D Scenes With Hierarchical Neural Representation | 
| 264 |  | 1 | |c 2025 | 
| 336 |  |  | |a Text 
  |b txt 
  |2 rdacontent | 
| 337 |  |  | |a ƒaComputermedien 
  |b c 
  |2 rdamedia | 
| 338 |  |  | |a ƒa Online-Ressource 
  |b cr 
  |2 rdacarrier | 
| 500 |  |  | |a Date Revised 08.09.2025 | 
| 500 |  |  | |a published: Print | 
| 500 |  |  | |a Citation Status PubMed-not-MEDLINE | 
| 520 |  |  | |a 3D scene stylization refers to generating stylized images of the scene at arbitrary novel view angles following a given set of style images while ensuring consistency when rendered from different views. Recently, several 3D style transfer methods leveraging the scene reconstruction capabilities of pre-trained neural radiance fields (NeRF) have been proposed. To successfully stylize a scene this way, one must first reconstruct a photo-realistic radiance field from collected images of the scene. However, when only sparse input views are available, pre-trained few-shot NeRFs often suffer from high-frequency artifacts, which are generated as a by-product of high-frequency details for improving reconstruction quality. Is it possible to generate more faithful stylized scenes from sparse inputs by directly optimizing encoding-based scene representation with target style? In this paper, we consider the stylization of sparse-view scenes in terms of disentangling content semantics and style textures. We propose a coarse-to-fine sparse-view scene stylization framework, where a novel hierarchical encoding-based neural representation is designed to generate high-quality stylized scenes directly from implicit scene representations. We also propose a new optimization strategy with content strength annealing to achieve realistic stylization and better content preservation. Extensive experiments demonstrate that our method can achieve high-quality stylization of sparse-view scenes and outperforms fine-tuning-based baselines in terms of stylization quality and efficiency | 
| 650 |  | 4 | |a Journal Article | 
| 700 | 1 |  | |a Gao, Ang 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Gong, Yi 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Zeng, Yuan 
  |e verfasserin 
  |4 aut | 
| 773 | 0 | 8 | |i Enthalten in 
  |t IEEE transactions on visualization and computer graphics 
  |d 1996 
  |g 31(2025), 10 vom: 26. Sept., Seite 7876-7889 
  |w (DE-627)NLM098269445 
  |x 1941-0506 
  |7 nnas | 
| 773 | 1 | 8 | |g volume:31 
  |g year:2025 
  |g number:10 
  |g day:26 
  |g month:09 
  |g pages:7876-7889 | 
| 856 | 4 | 0 | |u http://dx.doi.org/10.1109/TVCG.2025.3558468 
  |3 Volltext | 
| 912 |  |  | |a GBV_USEFLAG_A | 
| 912 |  |  | |a SYSFLAG_A | 
| 912 |  |  | |a GBV_NLM | 
| 912 |  |  | |a GBV_ILN_350 | 
| 951 |  |  | |a AR | 
| 952 |  |  | |d 31 
  |j 2025 
  |e 10 
  |b 26 
  |c 09 
  |h 7876-7889 |