TOP-Zn Steric Hindrance Effect Enables Ultra-Uniform CsPbX3 Quantum Dots for Wide-Color Gamut Displays
© 2025 Wiley‐VCH GmbH.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 20 vom: 19. Mai, Seite e2409308 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , , , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2025
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article FWHM narrowing TOP‐Zn complex light‐emitting diodes nucleation‐growth perovskite quantum dots |
| Zusammenfassung: | © 2025 Wiley‐VCH GmbH. Perovskite quantum dots (PQDs) are expected to be an ideal candidate for wide-color gamut displays owing to their high color purity. However, their color purity is challenged by remarkable spectral broadening due to non-uniform size distribution and crystal defects. Here, a ligand-ion (TOP-Zn) complex-modulating nucleation strategy is proposed to depress spectral broadening. This is achieved by enhancing the steric hindrance effect during lead-halogen octahedral assembly and reducing the reaction activity/sites of the system. This strategy is universal and has been confirmed to be effective for blue, green, and red PQDs, achieving narrowed spectral full-width-at-half-maximum (FWHM) of 15, 17, and 25 nm, respectively. These FWHMs are record-breaking and contribute to a wide color gamut coverage of ≈130% National Television Standards Committee and ≈100% Rec. 2020 standard. Meanwhile, these PQD-based light-emitting diodes (PeLEDs) exhibit a high external quantum efficiency (EQE) of exceeding 20% at their pure color range. These results provide a feasible path to achieve ultra-uniform and pure-color luminescent PQDs for wide-color gamut displays |
|---|---|
| Beschreibung: | Date Revised 19.05.2025 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202409308 |