|
|
|
|
| LEADER |
01000caa a22002652c 4500 |
| 001 |
NLM386453195 |
| 003 |
DE-627 |
| 005 |
20250509101626.0 |
| 007 |
cr uuu---uuuuu |
| 008 |
250508s2025 xx |||||o 00| ||eng c |
| 024 |
7 |
|
|a 10.1107/S1600576725000317
|2 doi
|
| 028 |
5 |
2 |
|a pubmed25n1363.xml
|
| 035 |
|
|
|a (DE-627)NLM386453195
|
| 035 |
|
|
|a (NLM)40170960
|
| 040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
| 041 |
|
|
|a eng
|
| 100 |
1 |
|
|a Tung, Chi-Huan
|e verfasserin
|4 aut
|
| 245 |
1 |
0 |
|a Insights into distorted lamellar phases with small-angle scattering and machine learning
|
| 264 |
|
1 |
|c 2025
|
| 336 |
|
|
|a Text
|b txt
|2 rdacontent
|
| 337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
| 338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
| 500 |
|
|
|a Date Revised 03.04.2025
|
| 500 |
|
|
|a published: Electronic-eCollection
|
| 500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
| 520 |
|
|
|a © Chi-Huan Tung et al. 2025.
|
| 520 |
|
|
|a Lamellar phases are essential in various soft matter systems, with topological defects significantly influencing their mechanical properties. In this report, we present a machine-learning approach for quantitatively analyzing the structure and dynamics of distorted lamellar phases using scattering techniques. By leveraging the mathematical framework of Kolmogorov-Arnold networks, we demonstrate that the conformations of these distorted phases - expressed as superpositions of complex waves - can be reconstructed from small-angle scattering intensities. Through the contour analysis of wave field phase singularities, we obtain the statistics of the spatial distribution of topological defects. Furthermore, we establish that the temporal evolution of these defects can be derived from the time-dependent traveling wave field, informed by the dispersion relation of spectral components. This method opens new avenues for investigating the dynamics of distorted lamellar phases using various dynamic scattering techniques such as neutron spin echo and X-ray photon correlation spectroscopy. These findings enhance our microscopic understanding of how defects influence the physical properties of lamellar materials, with implications for both equilibrium and non-equilibrium states in general lamellar systems
|
| 650 |
|
4 |
|a Journal Article
|
| 650 |
|
4 |
|a Kolmogorov–Arnold networks
|
| 650 |
|
4 |
|a distorted lamellar phases
|
| 650 |
|
4 |
|a machine learning
|
| 650 |
|
4 |
|a regression analysis
|
| 650 |
|
4 |
|a small-angle scattering
|
| 700 |
1 |
|
|a Ding, Lijie
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Huang, Guan-Rong
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Porcar, Lionel
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Shinohara, Yuya
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Sumpter, Bobby G
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Do, Changwoo
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Chen, Wei-Ren
|e verfasserin
|4 aut
|
| 773 |
0 |
8 |
|i Enthalten in
|t Journal of applied crystallography
|d 1998
|g 58(2025), Pt 2 vom: 01. Apr., Seite 523-534
|w (DE-627)NLM098121561
|x 0021-8898
|7 nnas
|
| 773 |
1 |
8 |
|g volume:58
|g year:2025
|g number:Pt 2
|g day:01
|g month:04
|g pages:523-534
|
| 856 |
4 |
0 |
|u http://dx.doi.org/10.1107/S1600576725000317
|3 Volltext
|
| 912 |
|
|
|a GBV_USEFLAG_A
|
| 912 |
|
|
|a SYSFLAG_A
|
| 912 |
|
|
|a GBV_NLM
|
| 912 |
|
|
|a GBV_ILN_350
|
| 951 |
|
|
|a AR
|
| 952 |
|
|
|d 58
|j 2025
|e Pt 2
|b 01
|c 04
|h 523-534
|