Metal-polyphenol Multistage Competitive Coordination System for Colorimetric Monitoring Meat Freshness

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 01. Apr., Seite e2503246
1. Verfasser: Cheng, Jun (VerfasserIn)
Weitere Verfasser: Shen, Yao, Gu, Yulu, Xiang, Tongyue, Shen, Hui, Wang, Yi, Hu, Zhenyang, Zheng, Zhen, Yu, Zhilong, Wu, Qin, Wang, Yinghui, Zhao, Tiancong, Xie, Yunfei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article colorimetric sensor array convolutional neural network meat freshness metal‐polyphenol multistage competitive coordination
LEADER 01000naa a22002652c 4500
001 NLM386415420
003 DE-627
005 20250508124337.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202503246  |2 doi 
028 5 2 |a pubmed25n1361.xml 
035 |a (DE-627)NLM386415420 
035 |a (NLM)40165653 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Jun  |e verfasserin  |4 aut 
245 1 0 |a Metal-polyphenol Multistage Competitive Coordination System for Colorimetric Monitoring Meat Freshness 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a A low-cost, high-precision, and secure real-time system for monitoring food freshness can significantly improve spoilage issues, yet traditional colorimetric sensor arrays often suffer from chemical dyes' high toxicity and limited color changes. Here, a metal-polyphenol network colorimetric sensor array (MPN-CSA) is built for detecting total volatile base nitrogen (TVB-N) markers of meat freshness. The multi-level competitive coordination process between the metal-polyphenol system and amine substances endows the system with color changes far beyond those of traditional dyes (reaching a detection limit of 300 ppb). By integrating convolutional neural network (CNN) technology, an online platform is developed for monitoring meat freshness, achieving an overall detection accuracy rate of 99.83%. This environmentally friendly, economically viable MPN-CSA that monitors the freshness of meat in complex storage environments can be incorporated into food packaging boxes, enabling consumers and suppliers to assess the freshness of meat in real-time, thus helping to reduce food waste and prevent foodborne illnesses 
650 4 |a Journal Article 
650 4 |a colorimetric sensor array 
650 4 |a convolutional neural network 
650 4 |a meat freshness 
650 4 |a metal‐polyphenol 
650 4 |a multistage competitive coordination 
700 1 |a Shen, Yao  |e verfasserin  |4 aut 
700 1 |a Gu, Yulu  |e verfasserin  |4 aut 
700 1 |a Xiang, Tongyue  |e verfasserin  |4 aut 
700 1 |a Shen, Hui  |e verfasserin  |4 aut 
700 1 |a Wang, Yi  |e verfasserin  |4 aut 
700 1 |a Hu, Zhenyang  |e verfasserin  |4 aut 
700 1 |a Zheng, Zhen  |e verfasserin  |4 aut 
700 1 |a Yu, Zhilong  |e verfasserin  |4 aut 
700 1 |a Wu, Qin  |e verfasserin  |4 aut 
700 1 |a Wang, Yinghui  |e verfasserin  |4 aut 
700 1 |a Zhao, Tiancong  |e verfasserin  |4 aut 
700 1 |a Xie, Yunfei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2025) vom: 01. Apr., Seite e2503246  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2025  |g day:01  |g month:04  |g pages:e2503246 
856 4 0 |u http://dx.doi.org/10.1002/adma.202503246  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 01  |c 04  |h e2503246