|
|
|
|
LEADER |
01000naa a22002652c 4500 |
001 |
NLM386415420 |
003 |
DE-627 |
005 |
20250508124337.0 |
007 |
cr uuu---uuuuu |
008 |
250508s2025 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202503246
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1361.xml
|
035 |
|
|
|a (DE-627)NLM386415420
|
035 |
|
|
|a (NLM)40165653
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Cheng, Jun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Metal-polyphenol Multistage Competitive Coordination System for Colorimetric Monitoring Meat Freshness
|
264 |
|
1 |
|c 2025
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.04.2025
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2025 Wiley‐VCH GmbH.
|
520 |
|
|
|a A low-cost, high-precision, and secure real-time system for monitoring food freshness can significantly improve spoilage issues, yet traditional colorimetric sensor arrays often suffer from chemical dyes' high toxicity and limited color changes. Here, a metal-polyphenol network colorimetric sensor array (MPN-CSA) is built for detecting total volatile base nitrogen (TVB-N) markers of meat freshness. The multi-level competitive coordination process between the metal-polyphenol system and amine substances endows the system with color changes far beyond those of traditional dyes (reaching a detection limit of 300 ppb). By integrating convolutional neural network (CNN) technology, an online platform is developed for monitoring meat freshness, achieving an overall detection accuracy rate of 99.83%. This environmentally friendly, economically viable MPN-CSA that monitors the freshness of meat in complex storage environments can be incorporated into food packaging boxes, enabling consumers and suppliers to assess the freshness of meat in real-time, thus helping to reduce food waste and prevent foodborne illnesses
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a colorimetric sensor array
|
650 |
|
4 |
|a convolutional neural network
|
650 |
|
4 |
|a meat freshness
|
650 |
|
4 |
|a metal‐polyphenol
|
650 |
|
4 |
|a multistage competitive coordination
|
700 |
1 |
|
|a Shen, Yao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gu, Yulu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiang, Tongyue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shen, Hui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Zhenyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Zhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Zhilong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Qin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yinghui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Tiancong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Yunfei
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2025) vom: 01. Apr., Seite e2503246
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g year:2025
|g day:01
|g month:04
|g pages:e2503246
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202503246
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2025
|b 01
|c 04
|h e2503246
|