In Situ Construction of a 3D Superionic Skeleton in Sodium Anode for Solid-State Sodium Batteries with a 15 000-Cycle Lifespan at 3C

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 31. März, Seite e2419190
1. Verfasser: Li, Chen (VerfasserIn)
Weitere Verfasser: Mu, Yongbiao, Deng, Tongtong, Li, Zongyang, Lu, Guanjie, Wang, Ronghua, Xu, Chaohe
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D superionic transport skeleton all‐solid‐state sodium battery composite sodium anode fast diffusion kinetics interfacial modification
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
Solid-state sodium-metal batteries (SSSMBs) have emerged as a promising candidate for next-generation energy storage systems due to their natural abundance, cost-effectiveness, and high safety. However, the intrinsically low ionic conductivity of sodium anode (SA) and poor wettability to solid-state electrolyte (SSE) severely hinder the development of SSSMBs. In this study, a 3D superionic transport skeleton Na3P is in situ constructed within the sodium anode by simply melting inexpensive and low-density red phosphorus with sodium, which successfully enhances the ion diffusion rate from 2.54 × 10‒8 to 1.33 × 10‒7 cm2 s‒1. Moreover, Na3P in the composite sodium anode (CSA) effectively induces the uniform deposition of Na on the surface of SSE, significantly reducing the interface impedance of symmetric cells from the initial value of 749.15 to 14.97 Ω cm2. Enabled by the integrated 3D superionic transport skeleton, the symmetric cell achieves exceptional cycle stability of over 7000 h at 0.1 mA cm‒2 and 4000 h at 0.3 mA cm‒2. Furthermore, SSSMBs incorporating CSA demonstrate an ultralong lifespan of over 15 000 cycles at 3C while maintaining a high-loading operation capability, significantly outperforming previously reported studies. This study highlights the crucial role of cost-effective CSA design with enhanced ion transport in advancing high-performance SSSMBs
Beschreibung:Date Revised 31.03.2025
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202419190