|
|
|
|
| LEADER |
01000caa a22002652c 4500 |
| 001 |
NLM38619341X |
| 003 |
DE-627 |
| 005 |
20250509152112.0 |
| 007 |
cr uuu---uuuuu |
| 008 |
250508s2025 xx |||||o 00| ||eng c |
| 024 |
7 |
|
|a 10.1109/TVCG.2025.3549898
|2 doi
|
| 028 |
5 |
2 |
|a pubmed25n1386.xml
|
| 035 |
|
|
|a (DE-627)NLM38619341X
|
| 035 |
|
|
|a (NLM)40138240
|
| 040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
| 041 |
|
|
|a eng
|
| 100 |
1 |
|
|a Tong, Guaneen
|e verfasserin
|4 aut
|
| 245 |
1 |
0 |
|a Multimodal Neural Acoustic Fields for Immersive Mixed Reality
|
| 264 |
|
1 |
|c 2025
|
| 336 |
|
|
|a Text
|b txt
|2 rdacontent
|
| 337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
| 338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
| 500 |
|
|
|a Date Revised 25.04.2025
|
| 500 |
|
|
|a published: Print-Electronic
|
| 500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
| 520 |
|
|
|a We introduce multimodal neural acoustic fields for synthesizing spatial sound and enabling the creation of immersive auditory experiences from novel viewpoints and in completely unseen new environments, both virtual and real. Extending the concept of neural radiance fields to acoustics, we develop a neural network-based model that maps an environment's geometric and visual features to its audio characteristics. Specifically, we introduce a novel hybrid transformer-convolutional neural network to accomplish two core tasks: capturing the reverberation characteristics of a scene from audio-visual data, and generating spatial sound in an unseen new environment from signals recorded at sparse positions and orientations within the original scene. By learning to represent spatial acoustics in a given environment, our approach enables creation of realistic immersive auditory experiences, thereby enhancing the sense of presence in augmented and virtual reality applications. We validate the proposed approach on both synthetic and real-world visual-acoustic data and demonstrate that our method produces nonlinear acoustic effects such as reverberations, and improves spatial audio quality compared to existing methods. Furthermore, we also conduct subjective user studies and demonstrate that the proposed framework significantly improves audio perception in immersive mixed reality applications
|
| 650 |
|
4 |
|a Journal Article
|
| 700 |
1 |
|
|a Leung, Johnathan Chi-Ho
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Peng, Xi
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Shi, Haosheng
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Zheng, Liujie
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Wang, Shengze
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a O'Brien, Arryn Carlos
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Neall, Ashley Paula-Ann
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Fei, Grace
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Gaspar, Martim
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Chakravarthula, Praneeth
|e verfasserin
|4 aut
|
| 773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g 31(2025), 5 vom: 01. Mai, Seite 3397-3407
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnas
|
| 773 |
1 |
8 |
|g volume:31
|g year:2025
|g number:5
|g day:01
|g month:05
|g pages:3397-3407
|
| 856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2025.3549898
|3 Volltext
|
| 912 |
|
|
|a GBV_USEFLAG_A
|
| 912 |
|
|
|a SYSFLAG_A
|
| 912 |
|
|
|a GBV_NLM
|
| 912 |
|
|
|a GBV_ILN_350
|
| 951 |
|
|
|a AR
|
| 952 |
|
|
|d 31
|j 2025
|e 5
|b 01
|c 05
|h 3397-3407
|