${\rm{H}}_{2}{\rm{O}}$H2O-NeRF : Radiance Fields Reconstruction for Two-Hand-Held Objects

Our work aims to reconstruct the appearance and geometry of the two-hand-held object from a sequence of color images. In contrast to traditional single-hand-held manipulation, two-hand-holding allows more flexible interaction, thereby providing back views of the object, which is particularly conveni...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 31(2025), 10 vom: 03. Sept., Seite 7696-7710
Auteur principal: Liu, Xinxin (Auteur)
Autres auteurs: Zhang, Qi, Huang, Xin, Feng, Ying, Zhou, Guoqing, Wang, Qing
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM386051453
003 DE-627
005 20250906233503.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2025.3553975  |2 doi 
028 5 2 |a pubmed25n1558.xml 
035 |a (DE-627)NLM386051453 
035 |a (NLM)40131751 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xinxin  |e verfasserin  |4 aut 
245 1 0 |a ${\rm{H}}_{2}{\rm{O}}$H2O-NeRF  |b Radiance Fields Reconstruction for Two-Hand-Held Objects 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.09.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Our work aims to reconstruct the appearance and geometry of the two-hand-held object from a sequence of color images. In contrast to traditional single-hand-held manipulation, two-hand-holding allows more flexible interaction, thereby providing back views of the object, which is particularly convenient for reconstruction but generates complex view-dependent occlusions. The recent development of neural rendering provides new potential for hand-held object reconstruction. In this paper, we propose a novel neural representation-based framework to recover radiance fields of the two-hand-held object, named ${\rm{H}}_{2}{\rm{O}}$H2O-NeRF. We first design an object-centric semantic module based on the geometric signed distance function cues to predict 3D object-centric regions and develop the view-dependent visible module based on the image-related cues to label 2D occluded regions. We then combine them to obtain a 2D visible mask that adaptively guides ray sampling on the object for optimization. We also provide a newly collected ${\rm{H}}_{2}{\rm{O}}$H2O dataset to validate the proposed method. Experiments show that our method achieves superior performance on reconstruction completeness and view-consistency synthesis compared to the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Zhang, Qi  |e verfasserin  |4 aut 
700 1 |a Huang, Xin  |e verfasserin  |4 aut 
700 1 |a Feng, Ying  |e verfasserin  |4 aut 
700 1 |a Zhou, Guoqing  |e verfasserin  |4 aut 
700 1 |a Wang, Qing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 31(2025), 10 vom: 03. Sept., Seite 7696-7710  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:31  |g year:2025  |g number:10  |g day:03  |g month:09  |g pages:7696-7710 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2025.3553975  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2025  |e 10  |b 03  |c 09  |h 7696-7710