Impact of Noisy Supervision in Foundation Model Learning

Foundation models are usually pre-trained on large-scale datasets and then adapted to different downstream tasks through tuning. This pre-training and then fine-tuning paradigm has become a standard practice in deep learning. However, the large-scale pre-training datasets, often inaccessible or too...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 21. März
1. Verfasser: Chen, Hao (VerfasserIn)
Weitere Verfasser: Wang, Zihan, Tao, Ran, Wei, Hongxin, Xie, Xing, Sugiyama, Masashi, Raj, Bhiksha, Wang, Jindong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM385940262
003 DE-627
005 20250509081716.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3552309  |2 doi 
028 5 2 |a pubmed25n1353.xml 
035 |a (DE-627)NLM385940262 
035 |a (NLM)40117144 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Hao  |e verfasserin  |4 aut 
245 1 0 |a Impact of Noisy Supervision in Foundation Model Learning 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Foundation models are usually pre-trained on large-scale datasets and then adapted to different downstream tasks through tuning. This pre-training and then fine-tuning paradigm has become a standard practice in deep learning. However, the large-scale pre-training datasets, often inaccessible or too expensive to handle, can contain label noise that may adversely affect the generalization of the model and pose unexpected risks. This paper stands out as the first work to comprehensively understand and analyze the nature of noise in pre-training datasets and then effectively mitigate its impacts on downstream tasks. Specifically, through extensive experiments of fully-supervised and image-text contrastive pre-training on synthetic noisy ImageNet-1K, YFCC15M, and CC12M datasets, we demonstrate that, while slight noise in pre-training can benefit in-domain (ID) performance, where the training and testing data share a similar distribution, it always deteriorates out-of-domain (OOD) performance, where training and testing distributions are significantly different. These observations are agnostic to scales of pre-training datasets, pre-training noise types, model architectures, pre-training objectives, downstream tuning methods, and downstream applications. We empirically ascertain that the reason behind this is that the pre-training noise shapes the feature space differently. We then propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization, which is applicable in both parameter-efficient and black-box tuning manners, considering one may not be able to access or fully fine-tune the pre-trained models. We additionally conduct extensive experiments on popular vision and language models, including APIs, which are supervised and self-supervised pre-trained on realistic noisy data for evaluation. Our analysis and results demonstrate the importance of this novel and fundamental research direction, which we term as Noisy Model Transfer Learning 
650 4 |a Journal Article 
700 1 |a Wang, Zihan  |e verfasserin  |4 aut 
700 1 |a Tao, Ran  |e verfasserin  |4 aut 
700 1 |a Wei, Hongxin  |e verfasserin  |4 aut 
700 1 |a Xie, Xing  |e verfasserin  |4 aut 
700 1 |a Sugiyama, Masashi  |e verfasserin  |4 aut 
700 1 |a Raj, Bhiksha  |e verfasserin  |4 aut 
700 1 |a Wang, Jindong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2025) vom: 21. März  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:21  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3552309  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 21  |c 03