Efficient H2O2 Electrosynthesis in Acidic media via Multiscale Catalyst Optimization

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 17 vom: 29. Apr., Seite e2418489
1. Verfasser: Shim, Jaehyuk (VerfasserIn)
Weitere Verfasser: Lee, Jaewoo, Shin, Heejong, Mok, Dong Hyeon, Heo, Sungeun, Paidi, Vinod K, Lee, Byoung-Hoon, Lee, Hyeon Seok, Yang, Juhyun, Shin, Dongho, Moon, Jaeho, Kim, Kang, Jung, Muho, Lee, Eungjun, Bootharaju, Megalamane S, Kim, Jeong Hyun, Park, Subin, Kim, Mi-Ju, Glatzel, Pieter, Yoo, Sung Jong, Back, Seoin, Lee, Kug-Seung, Sung, Yung-Eun, Hyeon, Taeghwan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article H2O2 treatment hydrogen peroxide production inner‐sphere electron transfer pathway multi‐level tuning strategy octahedron‐like cobalt structure
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
Electrochemically generating hydrogen peroxide (H2O2) from oxygen offers a more sustainable and cost-effective alternative to conventional anthraquinone process. In alkaline conditions, H2O2 is unstable as HO2 -, and in neutral electrolytes, alkali cation crossover causes system instability. Producing H2O2 in acidic electrolytes ensures enhanced stability and efficiency. However, in acidic conditions, the oxygen reduction reaction mechanism is dominated by the inner-sphere electron transfer pathway, requiring careful consideration of both reaction and mass transfer kinetics. These stringent requirements limit H2O2 production efficiency, typically below 10-20% at industrial-relevant current densities (>300 mA cm-2). Using a multiscale approach that combines active site tuning with macrostructure tuning, this work presents an octahedron-like cobalt structure on interconnected hierarchical porous nanofibers, achieving a faradaic efficiency exceeding 80% at 400 mA cm-2 and stable operation for over 120 h at 100 mA cm-2. At 300 mA cm-2, the optimized catalyst demonstrates a cell potential of 2.14 V, resulting in an energy efficiency of 26%
Beschreibung:Date Revised 29.04.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202418489