Multi-Stage Statistical Texture-Guided GAN for Tilted Face Frontalization

Existing pose-invariant face recognition mainly focuses on frontal or profile, whereas high-pitch angle face recognition, prevalent under surveillance videos, has yet to be investigated. More importantly, tilted faces significantly differ from frontal or profile faces in the potential feature space...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 21., Seite 1726-1736
1. Verfasser: Zeng, Kangli (VerfasserIn)
Weitere Verfasser: Wang, Zhongyuan, Lu, Tao, Chen, Jianyu, Liang, Chao, Han, Zhen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM385592574
003 DE-627
005 20250509075707.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3548896  |2 doi 
028 5 2 |a pubmed25n1350.xml 
035 |a (DE-627)NLM385592574 
035 |a (NLM)40080384 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zeng, Kangli  |e verfasserin  |4 aut 
245 1 0 |a Multi-Stage Statistical Texture-Guided GAN for Tilted Face Frontalization 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing pose-invariant face recognition mainly focuses on frontal or profile, whereas high-pitch angle face recognition, prevalent under surveillance videos, has yet to be investigated. More importantly, tilted faces significantly differ from frontal or profile faces in the potential feature space due to self-occlusion, thus seriously affecting key feature extraction for face recognition. In this paper, we asymptotically reshape challenging high-pitch angle faces into a series of small-angle approximate frontal faces and exploit a statistical approach to learn texture features to ensure accurate facial component generation. In particular, we design a statistical texture-guided GAN for tilted face frontalization (STG-GAN) consisting of three main components. First, the face encoder extracts shallow features, followed by the face statistical texture modeling module that learns multi-scale face texture features based on the statistical distributions of the shallow features. Then, the face decoder performs feature deformation guided by the face statistical texture features while highlighting the pose-invariant face discriminative information. With the addition of multi-scale content loss, identity loss and adversarial loss, we further develop a pose contrastive loss of potential spatial features to constrain pose consistency and make its face frontalization process more reliable. On this basis, we propose a divide-and-conquer strategy, using STG-GAN to progressively synthesize faces with small pitch angles in multiple stages to achieve frontalization gradually. A unified end-to-end training across multiple stages facilitates the generation of numerous intermediate results to achieve a reasonable approximation of the ground truth. Extensive qualitative and quantitative experiments on multiple-face datasets demonstrate the superiority of our approach 
650 4 |a Journal Article 
700 1 |a Wang, Zhongyuan  |e verfasserin  |4 aut 
700 1 |a Lu, Tao  |e verfasserin  |4 aut 
700 1 |a Chen, Jianyu  |e verfasserin  |4 aut 
700 1 |a Liang, Chao  |e verfasserin  |4 aut 
700 1 |a Han, Zhen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 21., Seite 1726-1736  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:21  |g pages:1726-1736 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3548896  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 21  |h 1726-1736