Electrically Tunable and Modulated Perovskite Quantum Emitters via Surface-Enhanced Landau Damping

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 16 vom: 01. Apr., Seite e2419076
1. Verfasser: Liu, Yan (VerfasserIn)
Weitere Verfasser: Zhang, Jun, Csányi, Evelin, Adanan, Nur Qalishah, Wang, Hongtao, Zhang, Zheng, Yap, Sherry Lee Koon, Lee, Henry Yit Loong, Zhang, Shutao, Goh, Wei Peng, Lim, Li Jun, Tan, Zhi-Kuang, Soh, Jian Rui, Xiong, Lulu, Kalashnikov, Dmitry A, Simpson, Robert E, Qiu, Cheng-Wei, Mortensen, N Asger, Yang, Joel K W, Dong, Zhaogang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article electrical modulation localized surface plasmons (LSPs) excited hot‐electron injection phase‐change materials surface‐enhanced landau damping tunable perovskite quantum emissions
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
Tuning quantum emission to a specific wavelength at room temperature holds significant promise for enhancing secure quantum communication, particularly by aligning with the Fraunhofer lines in the solar spectrum. The integration of quantum emitters with phase-change materials enables emission wavelength modulation, especially when strong field enhancement is present. Antimony telluride (Sb2Te3) exhibits the potential to facilitate this functionality through its support of interband plasmonics and phase-change behavior. In this study, Sb₂Te₃ antennae are designed and fabricated to tune the emission energy of adjacent perovskite quantum dots (QDs) by over 570 meV. The underlying mechanism involves the localized surface plasmons (LSPs) on Sb₂Te₃ nanostructures, which exhibit a surface-enhanced Landau damping process that facilitates the decay of LSPs into electron-hole pairs. The generated hot electrons are then injected into perovskite QDs via the microscopic electron transport process, which can be triggered by the transition of Sb2Te3 from amorphous to a crystalline state, resulting in a significant emission energy shift from 1.64 to 2.21 eV. Furthermore, the emission energy of perovskite QDs on crystalline Sb₂Te₃ nanoantennae can be modulated through DC voltage bias, highlighting the potential for extensive wavelength tunability of quantum emitters integrated with electronic systems
Beschreibung:Date Revised 23.04.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202419076