Monte Carlo Neural PDE Solver for Learning PDEs Via Probabilistic Representation

In scenarios with limited available data, training the function-to-function neural PDE solver in an unsupervised manner is essential. However, the efficiency and accuracy of existing methods are constrained by the properties of numerical algorithms, such as finite difference and pseudo-spectral meth...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 07. März
1. Verfasser: Zhang, Rui (VerfasserIn)
Weitere Verfasser: Meng, Qi, Zhu, Rongchan, Wang, Yue, Shi, Wenlei, Zhang, Shihua, Ma, Zhi-Ming, Liu, Tie-Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article