Tissue Clutter Filtering Methods in Ultrasound Localization Microscopy Based on Complex-Valued Networks and Knowledge Distillation

Ultrasound localization microscopy (ULM) is a blood flow imaging technique that utilizes micrometer-sized microbubbles (MBs) as contrast agents to achieve high-resolution microvessel reconstruction through precise localization and tracking of MBs. The accuracy of MB localization is critical for prod...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 72(2025), 4 vom: 19. Apr., Seite 440-453
Auteur principal: Han, Wenzhao (Auteur)
Autres auteurs: Zhou, Wenjun, Huang, Lijie, Luo, Jianwen, Peng, Bo
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Sujets:Journal Article Contrast Media
LEADER 01000caa a22002652c 4500
001 NLM385081405
003 DE-627
005 20250509140434.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2025.3544692  |2 doi 
028 5 2 |a pubmed25n1383.xml 
035 |a (DE-627)NLM385081405 
035 |a (NLM)40031806 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Wenzhao  |e verfasserin  |4 aut 
245 1 0 |a Tissue Clutter Filtering Methods in Ultrasound Localization Microscopy Based on Complex-Valued Networks and Knowledge Distillation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.04.2025 
500 |a Date Revised 22.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Ultrasound localization microscopy (ULM) is a blood flow imaging technique that utilizes micrometer-sized microbubbles (MBs) as contrast agents to achieve high-resolution microvessel reconstruction through precise localization and tracking of MBs. The accuracy of MB localization is critical for producing high-quality images, which makes tissue clutter filtering an essential step in ULM. Recent advances in deep learning have led to innovative methods for tissue clutter filtering, particularly those based on 3-D convolution, which effectively capture the spatiotemporal features of MBs. These methods significantly improve upon traditional approaches by addressing issues such as lengthy inference time and limited flexibility. However, many deep learning techniques primarily focus on B-mode images and demonstrate lower efficiency. To overcome these limitations, this study proposes knowledge distillation for tissue clutter filtering to enhance filtering efficiency while maintaining performance. This study first develops a lightweight 2-D complex-valued convolutional neural network (CCNN) (CL-UNet) as the teacher model, utilizing I/Q signal input. Subsequently, a 2-D real-valued convolutional neural network (CNN) (UNet-T) is developed as the student model, which uses envelope data as input. Feature-based knowledge distillation is applied to transfer knowledge from the teacher model to the student model (Guided UNet-T). All models are trained on simulated data and fine-tuned on in vivo data. The experimental results show that CL-UNet (I/Q, ours) demonstrates better filtering performance compared to the B-mode image-based approach on both simulated and in vivo data. Guided UNet-T outperforms both singular value decomposition (SVD) and random SVD (RSVD) in terms of both performance and speed, offering the best balance between filtering efficiency and effectiveness 
650 4 |a Journal Article 
650 7 |a Contrast Media  |2 NLM 
700 1 |a Zhou, Wenjun  |e verfasserin  |4 aut 
700 1 |a Huang, Lijie  |e verfasserin  |4 aut 
700 1 |a Luo, Jianwen  |e verfasserin  |4 aut 
700 1 |a Peng, Bo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 72(2025), 4 vom: 19. Apr., Seite 440-453  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnas 
773 1 8 |g volume:72  |g year:2025  |g number:4  |g day:19  |g month:04  |g pages:440-453 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2025.3544692  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 72  |j 2025  |e 4  |b 19  |c 04  |h 440-453