PhysMLE : Generalizable and Priors-Inclusive Multi-task Remote Physiological Measurement

Remote photoplethysmography (rPPG) has been widely applied to measure heart rate from face videos. To increase the generalizability of the algorithms, domain generalization (DG) attracted increasing attention in rPPG. However, when rPPG is extended to simultaneously measure more vital signs (e.g., r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 25. Feb.
1. Verfasser: Wang, Jiyao (VerfasserIn)
Weitere Verfasser: Lu, Hao, Wang, Ange, Yang, Xiao, Chen, Yingcong, He, Dengbo, Wu, Kaishun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM385081111
003 DE-627
005 20250509083822.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3545598  |2 doi 
028 5 2 |a pubmed25n1355.xml 
035 |a (DE-627)NLM385081111 
035 |a (NLM)40031788 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jiyao  |e verfasserin  |4 aut 
245 1 0 |a PhysMLE  |b Generalizable and Priors-Inclusive Multi-task Remote Physiological Measurement 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Remote photoplethysmography (rPPG) has been widely applied to measure heart rate from face videos. To increase the generalizability of the algorithms, domain generalization (DG) attracted increasing attention in rPPG. However, when rPPG is extended to simultaneously measure more vital signs (e.g., respiration and blood oxygen saturation), achieving generalizability brings new challenges. Although partial features shared among different physiological signals can benefit multi-task learning, the sparse and imbalanced target label space brings the seesaw effect over task-specific feature learning. To resolve this problem, we designed an end-to-end Mixture of Low-rank Experts for multi-task remote Physiological measurement (PhysMLE), which is based on multiple low-rank experts with a novel router mechanism, thereby enabling the model to adeptly handle both specifications and correlations within tasks. Additionally, we introduced prior knowledge from physiology among tasks to overcome the imbalance of label space under real-world multi-task physiological measurement. For fair and comprehensive evaluations, this paper proposed a large-scale multi-task generalization benchmark, named Multi-Source Synsemantic Domain Generalization (MSSDG) protocol. Extensive experiments with MSSDG and intra-dataset have shown the effectiveness and efficiency of PhysMLE. In addition, a new dataset was collected and made publicly available to meet the needs of the MSSDG. The code is available at https://github.com/WJULYW/PhysMLE 
650 4 |a Journal Article 
700 1 |a Lu, Hao  |e verfasserin  |4 aut 
700 1 |a Wang, Ange  |e verfasserin  |4 aut 
700 1 |a Yang, Xiao  |e verfasserin  |4 aut 
700 1 |a Chen, Yingcong  |e verfasserin  |4 aut 
700 1 |a He, Dengbo  |e verfasserin  |4 aut 
700 1 |a Wu, Kaishun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2025) vom: 25. Feb.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:25  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3545598  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 25  |c 02