Rethinking Copy-Paste for Consistency Learning in Medical Image Segmentation

Semi-supervised learning based on consistency learning offers significant promise for enhancing medical image segmentation. Current approaches use copy-paste as an effective data perturbation technique to facilitate weak-to-strong consistency learning. However, these techniques often lead to a decre...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 04., Seite 1060-1074
1. Verfasser: Huang, Senlong (VerfasserIn)
Weitere Verfasser: Ge, Yongxin, Liu, Dongfang, Hong, Mingjian, Zhao, Junhan, Loui, Alexander C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM38508059X
003 DE-627
005 20250714073831.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3536208  |2 doi 
028 5 2 |a pubmed25n1402.xml 
035 |a (DE-627)NLM38508059X 
035 |a (NLM)40031728 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Senlong  |e verfasserin  |4 aut 
245 1 0 |a Rethinking Copy-Paste for Consistency Learning in Medical Image Segmentation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.05.2025 
500 |a Date Revised 10.05.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Semi-supervised learning based on consistency learning offers significant promise for enhancing medical image segmentation. Current approaches use copy-paste as an effective data perturbation technique to facilitate weak-to-strong consistency learning. However, these techniques often lead to a decrease in the accuracy of synthetic labels corresponding to the synthetic data and introduce excessive perturbations to the distribution of the training data. Such over-perturbation causes the data distribution to stray from its true distribution, thereby impairing the model's generalization capabilities as it learns the decision boundaries. We propose a weak-to-strong consistency learning framework that integrally addresses these issues with two primary designs: 1) it emphasizes the use of highly reliable data to enhance the quality of labels in synthetic datasets through cross-copy-pasting between labeled and unlabeled datasets; 2) it employs uncertainty estimation and foreground region constraints to meticulously filter the regions for copy-pasting, thus the copy-paste technique implemented introduces a beneficial perturbation to the training data distribution. Our framework expands the copy-paste method by addressing its inherent limitations, and amplifying the potential of data perturbations for consistency learning. We extensively validated our model using six publicly available medical image segmentation datasets across different diagnostic tasks, including the segmentation of cardiac structures, prostate structures, brain structures, skin lesions, and gastrointestinal polyps. The results demonstrate that our method significantly outperforms state-of-the-art models. For instance, on the PROMISE12 dataset for the prostate structure segmentation task, using only 10% labeled data, our method achieves a 15.31% higher Dice score compared to the baseline models. Our experimental code will be made publicly available at https://github.com/slhuang24/RCP4CL 
650 4 |a Journal Article 
700 1 |a Ge, Yongxin  |e verfasserin  |4 aut 
700 1 |a Liu, Dongfang  |e verfasserin  |4 aut 
700 1 |a Hong, Mingjian  |e verfasserin  |4 aut 
700 1 |a Zhao, Junhan  |e verfasserin  |4 aut 
700 1 |a Loui, Alexander C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 04., Seite 1060-1074  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:04  |g pages:1060-1074 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3536208  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 04  |h 1060-1074