S-NeRF++ : Autonomous Driving Simulation via Neural Reconstruction and Generation

Autonomous driving simulation system plays a crucial role in enhancing self-driving data and simulating complex and rare traffic scenarios, ensuring navigation safety. However, traditional simulation systems, which often heavily rely on manual modeling and 2D image editing, struggled with scaling to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 17. Feb.
1. Verfasser: Chen, Yurui (VerfasserIn)
Weitere Verfasser: Zhang, Junge, Xie, Ziyang, Li, Wenye, Zhang, Feihu, Lu, Jiachen, Zhang, Li
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM385080557
003 DE-627
005 20250509104112.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3543072  |2 doi 
028 5 2 |a pubmed25n1365.xml 
035 |a (DE-627)NLM385080557 
035 |a (NLM)40031718 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Yurui  |e verfasserin  |4 aut 
245 1 0 |a S-NeRF++  |b Autonomous Driving Simulation via Neural Reconstruction and Generation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Autonomous driving simulation system plays a crucial role in enhancing self-driving data and simulating complex and rare traffic scenarios, ensuring navigation safety. However, traditional simulation systems, which often heavily rely on manual modeling and 2D image editing, struggled with scaling to extensive scenes and generating realistic simulation data. In this study, we present S-NeRF++, an innovative autonomous driving simulation system based on neural reconstruction. Trained on widely-used self-driving datasets such as nuScenes and Waymo, S-NeRF++ can generate a large number of realistic street scenes and foreground objects with high rendering quality as well as offering considerable flexibility in manipulation and simulation. Specifically, S-NeRF++ is an enhanced neural radiance field for synthesizing large-scale scenes and moving vehicles, with improved scene parameterization and camera pose learning. The system effectively utilizes noisy and sparse LiDAR data to refine training and address depth outliers, ensuring highquality reconstruction and novel-view rendering. It also provides a diverse foreground asset bank by reconstructing and generating different foreground vehicles to support comprehensive scenario creation. Moreover, we have developed an advanced foregroundbackground fusion pipeline that skillfully integrates illumination and shadow effects, further enhancing the realism of our simulations. With the high-quality simulated data provided by our S-NeRF++, we found the perception methods enjoy performance boosts on several autonomous driving downstream tasks, further demonstrating our proposed simulator's effectiveness 
650 4 |a Journal Article 
700 1 |a Zhang, Junge  |e verfasserin  |4 aut 
700 1 |a Xie, Ziyang  |e verfasserin  |4 aut 
700 1 |a Li, Wenye  |e verfasserin  |4 aut 
700 1 |a Zhang, Feihu  |e verfasserin  |4 aut 
700 1 |a Lu, Jiachen  |e verfasserin  |4 aut 
700 1 |a Zhang, Li  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2025) vom: 17. Feb.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:17  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3543072  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 17  |c 02