Aligning, Autoencoding and Prompting Large Language Models for Novel Disease Reporting

Given radiology images, automatic radiology report generation aims to produce informative text that reports diseases. It can benefit current clinical practice in diagnostic radiology. Existing methods typically rely on large-scale medical datasets annotated by clinicians to train desirable models. H...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 5 vom: 07. Mai, Seite 3332-3343
Auteur principal: Liu, Fenglin (Auteur)
Autres auteurs: Wu, Xian, Huang, Jinfa, Yang, Bang, Branson, Kim, Schwab, Patrick, Clifton, Lei, Zhang, Ping, Luo, Jiebo, Zheng, Yefeng, Clifton, David A
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM385076843
003 DE-627
005 20250509111823.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3534586  |2 doi 
028 5 2 |a pubmed25n1369.xml 
035 |a (DE-627)NLM385076843 
035 |a (NLM)40031357 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Fenglin  |e verfasserin  |4 aut 
245 1 0 |a Aligning, Autoencoding and Prompting Large Language Models for Novel Disease Reporting 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.04.2025 
500 |a Date Revised 09.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Given radiology images, automatic radiology report generation aims to produce informative text that reports diseases. It can benefit current clinical practice in diagnostic radiology. Existing methods typically rely on large-scale medical datasets annotated by clinicians to train desirable models. However, for novel diseases, sufficient training data are typically not available. We propose a prompt-based deep learning framework, i.e., PromptLLM, to align, autoencode, and prompt the (large) language model to generate reports for novel diseases accurately and efficiently. Our method includes three major steps: 1) aligning visual images and textual reports to learn general knowledge across modalities from diseases where labeled data are sufficient, 2) autoencoding the LLM using unlabeled data of novel diseases to learn the specific knowledge and writing styles of the novel disease, and 3) prompting the LLM with learned knowledge and writing styles to report the novel diseases contained in the radiology images. Through the above three steps, with limited labels on novel diseases, we show that PromptLLM can rapidly learn the corresponding knowledge for accurate novel disease reporting. The experiments on COVID-19 and diverse thorax diseases show that our approach, utilizing 1% of the training data, achieves desirable performance compared to previous methods. It shows that our approach allows us to relax the reliance on labeled data that is common to existing methods. It could have a real-world impact on data analysis during the early stages of novel diseases 
650 4 |a Journal Article 
700 1 |a Wu, Xian  |e verfasserin  |4 aut 
700 1 |a Huang, Jinfa  |e verfasserin  |4 aut 
700 1 |a Yang, Bang  |e verfasserin  |4 aut 
700 1 |a Branson, Kim  |e verfasserin  |4 aut 
700 1 |a Schwab, Patrick  |e verfasserin  |4 aut 
700 1 |a Clifton, Lei  |e verfasserin  |4 aut 
700 1 |a Zhang, Ping  |e verfasserin  |4 aut 
700 1 |a Luo, Jiebo  |e verfasserin  |4 aut 
700 1 |a Zheng, Yefeng  |e verfasserin  |4 aut 
700 1 |a Clifton, David A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 5 vom: 07. Mai, Seite 3332-3343  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:5  |g day:07  |g month:05  |g pages:3332-3343 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3534586  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 5  |b 07  |c 05  |h 3332-3343