A Deep Transformer-Based Fast CU Partition Approach for Inter-Mode VVC

The latest versatile video coding (VVC) standard proposed by the Joint Video Exploration Team (JVET) has significantly improved coding efficiency compared to that of its predecessor, while introducing an extremely higher computational complexity by $6\sim 26$ times. The quad-tree plus multi-type tre...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 22., Seite 1133-1148
1. Verfasser: Li, Tianyi (VerfasserIn)
Weitere Verfasser: Xu, Mai, Liu, Zheng, Chen, Ying, Li, Kai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM385075863
003 DE-627
005 20250509104106.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3533204  |2 doi 
028 5 2 |a pubmed25n1365.xml 
035 |a (DE-627)NLM385075863 
035 |a (NLM)40031252 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Tianyi  |e verfasserin  |4 aut 
245 1 2 |a A Deep Transformer-Based Fast CU Partition Approach for Inter-Mode VVC 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The latest versatile video coding (VVC) standard proposed by the Joint Video Exploration Team (JVET) has significantly improved coding efficiency compared to that of its predecessor, while introducing an extremely higher computational complexity by $6\sim 26$ times. The quad-tree plus multi-type tree (QTMT)-based coding unit (CU) partition accounts for most of the encoding time in VVC encoding. This paper proposes a data-driven fast CU partition approach based on an efficient Transformer model to accelerate VVC inter-coding. First, we establish a large-scale database for inter-mode VVC, comprising diverse CU partition patterns from more than 800 raw video sequences across various resolutions and contents. Next, we propose a deep neural network model with a Transformer-based temporal topology for predicting the CU partition, named as TCP-Net, which is adaptive to the group of pictures (GOP) hierarchy in VVC. Then, we design a two-stage structured output for TCP-Net, reflecting both the locations of CU edges and the split modes of all possible CUs. Accordingly, we develop a dual-supervised optimization mechanism to train the TCP-Net model with improved accuracy. The experimental results have verified that our approach can reduce the encoding time by $46.89\sim 55.91$ % with negligible rate-distortion (RD) degradation, outperforming other state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Xu, Mai  |e verfasserin  |4 aut 
700 1 |a Liu, Zheng  |e verfasserin  |4 aut 
700 1 |a Chen, Ying  |e verfasserin  |4 aut 
700 1 |a Li, Kai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 22., Seite 1133-1148  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:22  |g pages:1133-1148 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3533204  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 22  |h 1133-1148