BossNAS Family : Block-Wisely Self-Supervised Neural Architecture Search

Recent advances in hand-crafted neural architectures for visual recognition underscore the pressing need to explore architecture designs comprising diverse building blocks. Concurrently, neural architecture search (NAS) methods have gained traction as a means to alleviate human efforts. Nevertheless...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 5 vom: 07. Mai, Seite 3500-3514
Auteur principal: Li, Changlin (Auteur)
Autres auteurs: Lin, Sihao, Tang, Tao, Wang, Guangrun, Li, Mingjie, Liang, Xiaodan, Chang, Xiaojun
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM385073348
003 DE-627
005 20250509111822.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3529517  |2 doi 
028 5 2 |a pubmed25n1369.xml 
035 |a (DE-627)NLM385073348 
035 |a (NLM)40031006 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Changlin  |e verfasserin  |4 aut 
245 1 0 |a BossNAS Family  |b Block-Wisely Self-Supervised Neural Architecture Search 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent advances in hand-crafted neural architectures for visual recognition underscore the pressing need to explore architecture designs comprising diverse building blocks. Concurrently, neural architecture search (NAS) methods have gained traction as a means to alleviate human efforts. Nevertheless, the question of whether NAS methods can efficiently and effectively manage diversified search spaces featuring disparate candidates, such as Convolutional Neural Networks (CNNs) and transformers, remains an open question. In this work, we introduce a novel unsupervised NAS approach called BossNAS (Block-wisely Self-supervised Neural Architecture Search), which aims to address the problem of inaccurate predictive architecture ranking caused by a large weight-sharing space while mitigating potential ranking issue caused by biased supervision. To achieve this, we factorize the search space into blocks and introduce a novel self-supervised training scheme called Ensemble Bootstrapping, to train each block separately in an unsupervised manner. In the search phase, we propose an unsupervised Population-Centric Search, optimizing the candidate architecture towards the population center. Additionally, we enhance our NAS method by integrating masked image modeling and present BossNAS++ to overcome the lack of dense supervision in our block-wise self-supervised NAS. In BossNAS++, we introduce the training technique named Masked Ensemble Bootstrapping for block-wise supernet, accompanied by a Masked Population-Centric Search scheme to promote fairer architecture selection. Our family of models, discovered through BossNAS and BossNAS++, delivers impressive results across various search spaces and datasets. Our transformer model discovered by BossNAS++ attains a remarkable accuracy of 83.2% on ImageNet with only 10.5B MAdds, surpassing DeiT-B by 1.4% while maintaining a lower computation cost. Moreover, our approach excels in architecture rating accuracy, achieving Spearman correlations of 0.78 and 0.76 on the canonical MBConv search space with ImageNet and the NATS-Bench size search space with CIFAR-100, respectively, outperforming state-of-the-art NAS methods 
650 4 |a Journal Article 
700 1 |a Lin, Sihao  |e verfasserin  |4 aut 
700 1 |a Tang, Tao  |e verfasserin  |4 aut 
700 1 |a Wang, Guangrun  |e verfasserin  |4 aut 
700 1 |a Li, Mingjie  |e verfasserin  |4 aut 
700 1 |a Liang, Xiaodan  |e verfasserin  |4 aut 
700 1 |a Chang, Xiaojun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 5 vom: 07. Mai, Seite 3500-3514  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:5  |g day:07  |g month:05  |g pages:3500-3514 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3529517  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 5  |b 07  |c 05  |h 3500-3514