Clarify Confused Nodes via Separated Learning

Graph neural networks (GNNs) have achieved remarkable advances in graph-oriented tasks. However, real-world graphs invariably contain a certain proportion of heterophilous nodes, challenging the homophily assumption of traditional GNNs and hindering their performance. Most existing studies continue...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 4 vom: 15. Apr., Seite 2882-2896
Auteur principal: Zhou, Jiajun (Auteur)
Autres auteurs: Gong, Shengbo, Chen, Xuanze, Xie, Chenxuan, Yu, Shanqing, Xuan, Qi, Yang, Xiaoniu
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article