Clarify Confused Nodes via Separated Learning
Graph neural networks (GNNs) have achieved remarkable advances in graph-oriented tasks. However, real-world graphs invariably contain a certain proportion of heterophilous nodes, challenging the homophily assumption of traditional GNNs and hindering their performance. Most existing studies continue...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 4 vom: 15. Apr., Seite 2882-2896
|
Auteur principal: |
Zhou, Jiajun
(Auteur) |
Autres auteurs: |
Gong, Shengbo,
Chen, Xuanze,
Xie, Chenxuan,
Yu, Shanqing,
Xuan, Qi,
Yang, Xiaoniu |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2025
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
Sujets: | Journal Article |