Universal representation learning for multivariate time series using the instance-level and cluster-level supervised contrastive learning

The multivariate time series classification (MTSC) task aims to predict a class label for a given time series. Recently, modern deep learning-based approaches have achieved promising performance over traditional methods for MTSC tasks. The success of these approaches relies on access to the massive...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Data mining and knowledge discovery. - 2003. - 38(2024), 3 vom: 23. Mai, Seite 1493-1519
1. Verfasser: Moradinasab, Nazanin (VerfasserIn)
Weitere Verfasser: Sharma, Suchetha, Bar-Yoseph, Ronen, Radom-Aizik, Shlomit, Bilchick, Kenneth C, Cooper, Dan M, Weltman, Arthur, Brown, Donald E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Data mining and knowledge discovery
Schlagworte:Journal Article Classification Contrastive learning Interpretability Multivariate time series data