Deep-Blue OLEDs with BT. 2020 Blue Gamut, External Quantum Efficiency Approaching 40
© 2025 Wiley‐VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 12 vom: 11. März, Seite e2419601 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2025
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article deep‐blue hyperfluorescence multiple resonance organic light emitting diodes thermally activated delayed fluorescence |
Résumé: | © 2025 Wiley‐VCH GmbH. The hyperfluorescence (HF) technology holds great promise for the development of high-quality organic light-emitting diodes (OLEDs) for their excellent color purity, high efficiency, and low-efficiency roll-off. Sensitizer plays a crucial role in the performance of HF devices. However, designing sensitizers with simultaneous high photoluminescence quantum yield (PLQY), rapid radiative decay (kr), and fast reverse intersystem crossing rate (kRISC) poses a great challenge, particularly for the thermally activated delayed fluorescence (TADF) sensitizers targeting deep-blue HF device. Herein, by introducing a boron-containing multi-resonance-type acceptor into the multi-tert-butyl-carbazole encapsulated benzene molecular skeleton, two TADF emitters featuring hybridized multi-channel charge-transfer pathways, including short-range multi-resonance, weakened through-bond, and compact face-to-face through-space charge-transfer. Benefiting from the rational molecular design, the proof-of-concept sensitizers exhibit simultaneous rapid kr of 5.3 × 107 s-1, fast kRISC up to 5.9 × 105 s-1, a PQLY of near-unity, as well as ideal deep-blue emission in both solution and film. Consequently, the corresponding deep-blue HF devices not only achieve chromaticity coordinates that fully comply with the latest BT. 2020 standards, but also showcase record-high maximum external quantum efficiencies nearing 40%, along with suppressed efficiency roll-off |
---|---|
Description: | Date Revised 26.03.2025 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202419601 |