Diagnostics for categorical response models based on quantile residuals and distance measures

© 2024 Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 52(2025), 2 vom: 07., Seite 306-328
Auteur principal: Araripe, Patrícia Peres (Auteur)
Autres auteurs: Rodrigues de Lara, Idemauro Antonio, Rodrigues Palma, Gabriel, Cahill, Niamh, de Andrade Moral, Rafael
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Journal of applied statistics
Sujets:Journal Article 62J12 62J20 Generalized logit model half-normal plot maximum likelihood model selection normality
LEADER 01000naa a22002652c 4500
001 NLM384062245
003 DE-627
005 20250507233604.0
007 cr uuu---uuuuu
008 250507s2025 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2024.2367150  |2 doi 
028 5 2 |a pubmed25n1310.xml 
035 |a (DE-627)NLM384062245 
035 |a (NLM)39926183 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Araripe, Patrícia Peres  |e verfasserin  |4 aut 
245 1 0 |a Diagnostics for categorical response models based on quantile residuals and distance measures 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.02.2025 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Polytomous categorical data are frequent in studies, that can be obtained with an individual or grouped structure. In both structures, the generalized logit model is commonly used to relate the covariates on the response variable. After fitting a model, one of the challenges is the definition of an appropriate residual and choosing diagnostic techniques. Since the polytomous variable is multivariate, raw, Pearson, or deviance residuals are vectors and their asymptotic distribution is generally unknown, which leads to difficulties in graphical visualization and interpretation. Therefore, the definition of appropriate residuals and the choice of the correct analysis in diagnostic tools is important, especially for nominal data, where a restriction of methods is observed. This paper proposes the use of randomized quantile residuals associated with individual and grouped nominal data, as well as Euclidean and Mahalanobis distance measures, as an alternative to reduce the dimension of the residuals. We developed simulation studies with both data structures associated. The half-normal plots with simulation envelopes were used to assess model performance. These studies demonstrated a good performance of the quantile residuals, and the distance measurements allowed a better interpretation of the graphical techniques. We illustrate the proposed procedures with two applications to real data 
650 4 |a Journal Article 
650 4 |a 62J12 
650 4 |a 62J20 
650 4 |a Generalized logit model 
650 4 |a half-normal plot 
650 4 |a maximum likelihood 
650 4 |a model selection 
650 4 |a normality 
700 1 |a Rodrigues de Lara, Idemauro Antonio  |e verfasserin  |4 aut 
700 1 |a Rodrigues Palma, Gabriel  |e verfasserin  |4 aut 
700 1 |a Cahill, Niamh  |e verfasserin  |4 aut 
700 1 |a de Andrade Moral, Rafael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 52(2025), 2 vom: 07., Seite 306-328  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:52  |g year:2025  |g number:2  |g day:07  |g pages:306-328 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2024.2367150  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2025  |e 2  |b 07  |h 306-328