Network-based topic structure visualization

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 52(2025), 2 vom: 28., Seite 509-523
1. Verfasser: Jeon, Yeseul (VerfasserIn)
Weitere Verfasser: Park, Jina, Jin, Ick Hoon, Chung, Dongjun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Latent space item response model network analysis text mining topic embedding topic structure visualization
LEADER 01000caa a22002652c 4500
001 NLM384062229
003 DE-627
005 20250508000439.0
007 cr uuu---uuuuu
008 250507s2025 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2024.2369953  |2 doi 
028 5 2 |a pubmed25n1311.xml 
035 |a (DE-627)NLM384062229 
035 |a (NLM)39926182 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jeon, Yeseul  |e verfasserin  |4 aut 
245 1 0 |a Network-based topic structure visualization 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.02.2025 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In the real world, many topics are inter-correlated, making it challenging to investigate their structure and relationships. Understanding the interplay between topics and their relevance can provide valuable insights for researchers, guiding their studies and informing the direction of research. In this paper, we utilize the topic-words distribution, obtained from topic models, as item-response data to model the structure of topics using a latent space item response model. By estimating the latent positions of topics based on their distances toward words, we can capture the underlying topic structure and reveal their relationships. Visualizing the latent positions of topics in Euclidean space allows for an intuitive understanding of their proximity and associations. We interpret relationships among topics by characterizing each topic based on representative words selected using a newly proposed scoring scheme. Additionally, we assess the maturity of topics by tracking their latent positions using different word sets, providing insights into the robustness of topics. To demonstrate the effectiveness of our approach, we analyze the topic composition of COVID-19 studies during the early stage of its emergence using biomedical literature in the PubMed database. The software and data used in this paper are publicly available at https://github.com/jeon9677/gViz 
650 4 |a Journal Article 
650 4 |a Latent space item response model 
650 4 |a network analysis 
650 4 |a text mining 
650 4 |a topic embedding 
650 4 |a topic structure visualization 
700 1 |a Park, Jina  |e verfasserin  |4 aut 
700 1 |a Jin, Ick Hoon  |e verfasserin  |4 aut 
700 1 |a Chung, Dongjun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 52(2025), 2 vom: 28., Seite 509-523  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:52  |g year:2025  |g number:2  |g day:28  |g pages:509-523 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2024.2369953  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2025  |e 2  |b 28  |h 509-523