|
|
|
|
LEADER |
01000naa a22002652c 4500 |
001 |
NLM384062148 |
003 |
DE-627 |
005 |
20250507233604.0 |
007 |
cr uuu---uuuuu |
008 |
250507s2025 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/02664763.2024.2367143
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1310.xml
|
035 |
|
|
|a (DE-627)NLM384062148
|
035 |
|
|
|a (NLM)39926177
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Yifan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Robust convex biclustering with a tuning-free method
|
264 |
|
1 |
|c 2025
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 11.02.2025
|
500 |
|
|
|a published: Electronic-eCollection
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Informa UK Limited, trading as Taylor & Francis Group.
|
520 |
|
|
|a Biclustering is widely used in different kinds of fields including gene information analysis, text mining, and recommendation system by effectively discovering the local correlation between samples and features. However, many biclustering algorithms will collapse when facing heavy-tailed data. In this paper, we propose a robust version of convex biclustering algorithm with Huber loss. Yet, the newly introduced robustification parameter brings an extra burden to selecting the optimal parameters. Therefore, we propose a tuning-free method for automatically selecting the optimal robustification parameter with high efficiency. The simulation study demonstrates the more fabulous performance of our proposed method than traditional biclustering methods when encountering heavy-tailed noise. A real-life biomedical application is also presented. The R package RcvxBiclustr is available at https://github.com/YifanChen3/RcvxBiclustr
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 62-04
|
650 |
|
4 |
|a 62-08
|
650 |
|
4 |
|a 62P10
|
650 |
|
4 |
|a Biclustering
|
650 |
|
4 |
|a Huber loss
|
650 |
|
4 |
|a convex optimization
|
650 |
|
4 |
|a heavy tail
|
650 |
|
4 |
|a tuning-free
|
700 |
1 |
|
|a Lei, Chunyin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Chuanquan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Haiqiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Ningyuan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of applied statistics
|d 1991
|g 52(2025), 2 vom: 07., Seite 271-286
|w (DE-627)NLM098188178
|x 0266-4763
|7 nnas
|
773 |
1 |
8 |
|g volume:52
|g year:2025
|g number:2
|g day:07
|g pages:271-286
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/02664763.2024.2367143
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 52
|j 2025
|e 2
|b 07
|h 271-286
|