Robust convex biclustering with a tuning-free method

© 2024 Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 52(2025), 2 vom: 07., Seite 271-286
Auteur principal: Chen, Yifan (Auteur)
Autres auteurs: Lei, Chunyin, Li, Chuanquan, Ma, Haiqiang, Hu, Ningyuan
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Journal of applied statistics
Sujets:Journal Article 62-04 62-08 62P10 Biclustering Huber loss convex optimization heavy tail tuning-free
LEADER 01000naa a22002652c 4500
001 NLM384062148
003 DE-627
005 20250507233604.0
007 cr uuu---uuuuu
008 250507s2025 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2024.2367143  |2 doi 
028 5 2 |a pubmed25n1310.xml 
035 |a (DE-627)NLM384062148 
035 |a (NLM)39926177 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Yifan  |e verfasserin  |4 aut 
245 1 0 |a Robust convex biclustering with a tuning-free method 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.02.2025 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Biclustering is widely used in different kinds of fields including gene information analysis, text mining, and recommendation system by effectively discovering the local correlation between samples and features. However, many biclustering algorithms will collapse when facing heavy-tailed data. In this paper, we propose a robust version of convex biclustering algorithm with Huber loss. Yet, the newly introduced robustification parameter brings an extra burden to selecting the optimal parameters. Therefore, we propose a tuning-free method for automatically selecting the optimal robustification parameter with high efficiency. The simulation study demonstrates the more fabulous performance of our proposed method than traditional biclustering methods when encountering heavy-tailed noise. A real-life biomedical application is also presented. The R package RcvxBiclustr is available at https://github.com/YifanChen3/RcvxBiclustr 
650 4 |a Journal Article 
650 4 |a 62-04 
650 4 |a 62-08 
650 4 |a 62P10 
650 4 |a Biclustering 
650 4 |a Huber loss 
650 4 |a convex optimization 
650 4 |a heavy tail 
650 4 |a tuning-free 
700 1 |a Lei, Chunyin  |e verfasserin  |4 aut 
700 1 |a Li, Chuanquan  |e verfasserin  |4 aut 
700 1 |a Ma, Haiqiang  |e verfasserin  |4 aut 
700 1 |a Hu, Ningyuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 52(2025), 2 vom: 07., Seite 271-286  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:52  |g year:2025  |g number:2  |g day:07  |g pages:271-286 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2024.2367143  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2025  |e 2  |b 07  |h 271-286