Interpretable Radiomics Model Predicts Nanomedicine Tumor Accumulation Using Routine Medical Imaging

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 12 vom: 17. März, Seite e2416696
1. Verfasser: Tang, Jiajia (VerfasserIn)
Weitere Verfasser: Zhang, Jie, Li, Yang, Hu, Yongzhi, He, Doudou, Ni, Hao, Zhang, Jiulou, Wu, Feiyun, Tang, Yuxia, Wang, Shouju
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article artificial intelligence machine learning nanomedicine accumulation radiomics Gold 7440-57-5
LEADER 01000caa a22002652c 4500
001 NLM383985137
003 DE-627
005 20250509085003.0
007 cr uuu---uuuuu
008 250507s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202416696  |2 doi 
028 5 2 |a pubmed25n1356.xml 
035 |a (DE-627)NLM383985137 
035 |a (NLM)39916575 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tang, Jiajia  |e verfasserin  |4 aut 
245 1 0 |a Interpretable Radiomics Model Predicts Nanomedicine Tumor Accumulation Using Routine Medical Imaging 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.03.2025 
500 |a Date Revised 26.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Accurately predicting nanomedicine accumulation is critical for guiding patient stratification and optimizing treatment strategies in the context of precision medicine. However, non-invasive prediction of nanomedicine accumulation remains challenging, primarily due to the complexity of identifying relevant imaging features that predict accumulation. Here, a novel non-invasive method is proposed that utilizes standard-of-care medical imaging modalities, including computed tomography and ultrasound, combined with a radiomics-based model to predict nanomedicine accumulation in tumor. The model is validated using a test dataset consisting of seven tumor xenografts in mice and three sizes of gold nanoparticles, achieving an area under the receiver operating characteristic curve of 0.851. The median accumulation levels of tumors predicted as "high accumulators" are 2.69 times greater than those predicted as "low accumulators". Analysis of this machine-learning-driven interpretable radiomics model revealed imaging features that are strongly correlated with dense stroma, a recognized biological barrier to effective nanomedicine delivery. Radiomics-based prediction of tumor accumulation holds promise for stratifying patient and enabling precise tailoring of nanomedicine treatment strategies 
650 4 |a Journal Article 
650 4 |a artificial intelligence 
650 4 |a machine learning 
650 4 |a nanomedicine accumulation 
650 4 |a radiomics 
650 7 |a Gold  |2 NLM 
650 7 |a 7440-57-5  |2 NLM 
700 1 |a Zhang, Jie  |e verfasserin  |4 aut 
700 1 |a Li, Yang  |e verfasserin  |4 aut 
700 1 |a Hu, Yongzhi  |e verfasserin  |4 aut 
700 1 |a He, Doudou  |e verfasserin  |4 aut 
700 1 |a Ni, Hao  |e verfasserin  |4 aut 
700 1 |a Zhang, Jiulou  |e verfasserin  |4 aut 
700 1 |a Wu, Feiyun  |e verfasserin  |4 aut 
700 1 |a Tang, Yuxia  |e verfasserin  |4 aut 
700 1 |a Wang, Shouju  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 12 vom: 17. März, Seite e2416696  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:12  |g day:17  |g month:03  |g pages:e2416696 
856 4 0 |u http://dx.doi.org/10.1002/adma.202416696  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 12  |b 17  |c 03  |h e2416696