Manipulating Aggregation Kinetics toward Efficient All-Printed Organic Solar Cells
© 2025 Wiley‐VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 11 vom: 17. März, Seite e2418353 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2025
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article blade coating cyclohexyl molecular design morphology control organic solar cells |
Résumé: | © 2025 Wiley‐VCH GmbH. The power conversion efficiencies (PCEs) of all-printed organic solar cells (OSCs) remain inferior to those of spin-coated devices, primarily due to morphological variations within the bulk heterojunction processed via diverse coating/printing techniques. Herein, cyclohexyl is introduced as outer side chains to formulate a non-fullerene acceptor, BTP-Cy, aimed at modulating the molecular aggregation in solution and subsequent film formation kinetics during printing. Investigations demonstrate that BTP-Cy molecule with cyclohexyl side chains exhibits enhanced intermolecular π-π stacking, optimal solution aggregation size, and favorable phase separation. Consequently, PB3:FTCC-Br:BTP-Cy-based OSCs achieve remarkable PCEs of 20.2% and 19.5% via spin-coating and blade-coating, respectively. Furthermore, a 23.6 cm2 module exhibits a remarkable efficiency of 16.7%. This study offers a fresh perspective on tailoring the film formation kinetics of photoactive materials during printing through molecular design, paving a novel path to enhance the efficiency of all-printed OSCs |
---|---|
Description: | Date Revised 20.03.2025 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202418353 |