Manipulating Aggregation Kinetics toward Efficient All-Printed Organic Solar Cells

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 11 vom: 17. März, Seite e2418353
Auteur principal: Ren, Junzhen (Auteur)
Autres auteurs: Wang, Jianqiu, Qiao, Jiawei, Chen, Zhihao, Hao, Xiaotao, Zhang, Shaoqing, Hou, Jianhui
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article blade coating cyclohexyl molecular design morphology control organic solar cells
Description
Résumé:© 2025 Wiley‐VCH GmbH.
The power conversion efficiencies (PCEs) of all-printed organic solar cells (OSCs) remain inferior to those of spin-coated devices, primarily due to morphological variations within the bulk heterojunction processed via diverse coating/printing techniques. Herein, cyclohexyl is introduced as outer side chains to formulate a non-fullerene acceptor, BTP-Cy, aimed at modulating the molecular aggregation in solution and subsequent film formation kinetics during printing. Investigations demonstrate that BTP-Cy molecule with cyclohexyl side chains exhibits enhanced intermolecular π-π stacking, optimal solution aggregation size, and favorable phase separation. Consequently, PB3:FTCC-Br:BTP-Cy-based OSCs achieve remarkable PCEs of 20.2% and 19.5% via spin-coating and blade-coating, respectively. Furthermore, a 23.6 cm2 module exhibits a remarkable efficiency of 16.7%. This study offers a fresh perspective on tailoring the film formation kinetics of photoactive materials during printing through molecular design, paving a novel path to enhance the efficiency of all-printed OSCs
Description:Date Revised 20.03.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202418353