AutoRefl : active learning in neutron reflectometry for fast data acquisition

Neutron reflectometry (NR) is a powerful technique for interrogating the structure of thin films at interfaces. Because NR measurements are slow and instrument availability is limited, measurement efficiency is paramount. One approach to improving measurement efficiency is active learning (AL), in w...

Description complète

Détails bibliographiques
Publié dans:Journal of applied crystallography. - 1998. - 57(2024), 4 vom: 13.
Auteur principal: Hoogerheide, David P (Auteur)
Autres auteurs: Heinrich, Frank
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Journal of applied crystallography
Sujets:Journal Article active learning forecasting information machine learning neutron reflectometry
LEADER 01000naa a22002652c 4500
001 NLM383542480
003 DE-627
005 20250507211017.0
007 cr uuu---uuuuu
008 250507s2024 xx |||||o 00| ||eng c
024 7 |a 10.1107/s1600576724006447  |2 doi 
028 5 2 |a pubmed25n1298.xml 
035 |a (DE-627)NLM383542480 
035 |a (NLM)39872916 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hoogerheide, David P  |e verfasserin  |4 aut 
245 1 0 |a AutoRefl  |b active learning in neutron reflectometry for fast data acquisition 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.01.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Neutron reflectometry (NR) is a powerful technique for interrogating the structure of thin films at interfaces. Because NR measurements are slow and instrument availability is limited, measurement efficiency is paramount. One approach to improving measurement efficiency is active learning (AL), in which the next measurement configurations are selected on the basis of information gained from the partial data collected so far. AutoRefl, a model-based AL algorithm for neutron reflectometry measurements, is presented in this manuscript. AutoRefl uses the existing measurements of a function to choose both the position and the duration of the next measurement. AutoRefl maximizes the information acquisition rate in specific model parameters of interest and uses the well defined signal-to-noise ratio in counting measurements to choose appropriate measurement times. Since continuous measurement is desirable for practical implementation, AutoRefl features forecasting, in which the optimal positions of multiple future measurements are predicted from existing measurements. The performance of AutoRefl is compared with that of well established best practice measurements for supported lipid bilayer samples using realistic digital twins of monochromatic and polychromatic reflectometers. AutoRefl is shown to improve NR measurement speeds in all cases significantly 
650 4 |a Journal Article 
650 4 |a active learning 
650 4 |a forecasting 
650 4 |a information 
650 4 |a machine learning 
650 4 |a neutron reflectometry 
700 1 |a Heinrich, Frank  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 57(2024), 4 vom: 13.  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnas 
773 1 8 |g volume:57  |g year:2024  |g number:4  |g day:13 
856 4 0 |u http://dx.doi.org/10.1107/s1600576724006447  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2024  |e 4  |b 13