One-Step Synthesis of Carboxylated Polyethylene Glycol-Modified Polystyrene Microspheres and Their Application in the Luminescent Oxygen Channel Immunoassay
As one of the key diagnostic methods for detecting biomarkers and antigen-antibody interactions, the luminescent oxygen channel immunoassay (LOCI) has been widely applied in bioanalysis and other fields. In the context of LOCI, the performance of the prepared donor polystyrene (PS) microspheres sign...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 41(2025), 4 vom: 04. Feb., Seite 2427-2435 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2025
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Polystyrenes Polyethylene Glycols 3WJQ0SDW1A Oxygen S88TT14065 Enterotoxins enterotoxin B, staphylococcal 39424-53-8 Serum Albumin, Bovine |
Zusammenfassung: | As one of the key diagnostic methods for detecting biomarkers and antigen-antibody interactions, the luminescent oxygen channel immunoassay (LOCI) has been widely applied in bioanalysis and other fields. In the context of LOCI, the performance of the prepared donor polystyrene (PS) microspheres significantly impacts the detection signal values. In this study, an attempt was made to synthesize PS microspheres via one-step polymerization of styrene with an amphiphilic monomer (PEOOH), followed by swelling the silicon phthalocyanine photosensitizer into the PS microspheres, resulting in the functionalization of the PS microspheres with polyethylene glycol segments. The chemical stability and water solubility of polyethylene glycol (PEG) make it a versatile surface modification material while also inhibiting nonspecific protein adsorption. Results indicated that with increasing PEOOH content, the nonspecific protein adsorption of the resulting PS microspheres reduced, with the adsorption ability for BSA decreasing from 26.8 to 1.3 mg/g, approximately decreasing by 95.2%. Furthermore, the results demonstrated that PS microspheres prepared with 6% PEOOH exhibited a maximum signal-to-noise ratio (S/N) (approximately 28.7), nearly 14 times higher than PS microspheres without PEOOH (approximately 2.1). The analytical performance of the system for detecting staphylococcal enterotoxin B (SEB) revealed a detection limit of 0.1 ng/mL and a linear concentration range of 0.1 to 50 ng/mL for the donor PS microspheres (6% PEOOH). The synthesized donor PS microspheres exhibit a uniform particle size and stable signals, making them effective LOCI microcarriers. These properties facilitate a deeper understanding of molecular interactions and signal transduction mechanisms within biological systems |
---|---|
Beschreibung: | Date Completed 04.05.2025 Date Revised 04.05.2025 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c04082 |