Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3

Copyright © 2025 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 220(2025) vom: 15. März, Seite 109515
1. Verfasser: Gupta, Neha (VerfasserIn)
Weitere Verfasser: Srivastava, Ankit, Mishra, Arun Kumar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Aphanizomenon flos-Aquae Heterocyte L-arginine Nitric oxide Nitric oxide synthase Nitrogen metabolism Nitrogen N762921K75 Carbon mehr... 7440-44-0 Nitric Oxide 31C4KY9ESH Nitric Oxide Synthase EC 1.14.13.39 Bacterial Proteins
LEADER 01000caa a22002652c 4500
001 NLM383362962
003 DE-627
005 20250509181610.0
007 cr uuu---uuuuu
008 250507s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2025.109515  |2 doi 
028 5 2 |a pubmed25n1394.xml 
035 |a (DE-627)NLM383362962 
035 |a (NLM)39854790 
035 |a (PII)S0981-9428(25)00043-9 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gupta, Neha  |e verfasserin  |4 aut 
245 1 0 |a Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.05.2025 
500 |a Date Revised 03.05.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2025 Elsevier Masson SAS. All rights reserved. 
520 |a Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated. Therefore, the present study aims to investigates the impact of NOS-derived NO on nitrogen metabolism, heterocyte development, and carbon utilization dynamics in Aphanizomenon flos-aquae. Results demonstrate a three-fold increase in NOS-dependent NO production during the log to stationary growth phase in reponse to L-arginine availability. This increase in NOS activity substantially impacted critical cellular processes related to nitrogen metabolism. Specifically, the inhibition of NOS activity disrupted regulatory mechanisms involving ntcA and glnB genes, resulting in a failure to induce hetR, hep, dev and nif genes necessary for heterocyte differentiation and nitrogenase synthesis. NOS-derived NO also played a pivotal role in modulating the glutamine synthetase-glutamate synthase (GS-GOGAT) pathway, as evidenced by the sharp decline in glutamine and glutamate levels under NOS inhibition, which indicates impaired nitrogen assimilation. Besides, the observed alterations in succinate, fumarate, malate and pyruvate suggest regulatory roles of NOS in energy metabolism. NOS-inhibited cells redirected carbon flux towards glycogen/lipid biosynthesis, alongside protein degradation causing chlorosis, indicating nitrogen deficiency and compromised cellular viability. In contrast, NOS elicitation enhanced metabolic activity, supporting nitrogen assimilation and cellular growth. Overall, our results revealed the complex relationship among NOS-derived NO signaling, nitrogen metabolism, and carbon flux in cyanobacteria 
650 4 |a Journal Article 
650 4 |a Aphanizomenon flos-Aquae 
650 4 |a Heterocyte 
650 4 |a L-arginine 
650 4 |a Nitric oxide 
650 4 |a Nitric oxide synthase 
650 4 |a Nitrogen metabolism 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Nitric Oxide  |2 NLM 
650 7 |a 31C4KY9ESH  |2 NLM 
650 7 |a Nitric Oxide Synthase  |2 NLM 
650 7 |a EC 1.14.13.39  |2 NLM 
650 7 |a Bacterial Proteins  |2 NLM 
700 1 |a Srivastava, Ankit  |e verfasserin  |4 aut 
700 1 |a Mishra, Arun Kumar  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 220(2025) vom: 15. März, Seite 109515  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnas 
773 1 8 |g volume:220  |g year:2025  |g day:15  |g month:03  |g pages:109515 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2025.109515  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 220  |j 2025  |b 15  |c 03  |h 109515