A nomogram for the prediction of co-infection in MDA5 dermatomyositis : A rapid clinical assessment model

Copyright © 2025 Elsevier Inc. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Clinical immunology (Orlando, Fla.). - 1999. - 272(2025) vom: 15. März, Seite 110431
1. Verfasser: Wu, Yinlan (VerfasserIn)
Weitere Verfasser: Li, Yanhong, Zhou, Yu, Luo, Yubin, Cheng, Lu, Zhao, Jing, Huang, Deying, Ma, Ling, Wu, Tong, Liang, Xiuping, Liao, Zehui, Tan, Chunyu, Liu, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Clinical immunology (Orlando, Fla.)
Schlagworte:Journal Article Anti-melanoma differentiation-associated gene 5-positive dermatomyositis (MDA5 DM) Infection Nomogram Prediction model Interferon-Induced Helicase, IFIH1 EC 3.6.4.13 IFIH1 protein, human EC 3.6.1.-
LEADER 01000caa a22002652c 4500
001 NLM383242959
003 DE-627
005 20250509181011.0
007 cr uuu---uuuuu
008 250507s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.clim.2025.110431  |2 doi 
028 5 2 |a pubmed25n1394.xml 
035 |a (DE-627)NLM383242959 
035 |a (NLM)39842682 
035 |a (PII)S1521-6616(25)00006-3 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Yinlan  |e verfasserin  |4 aut 
245 1 2 |a A nomogram for the prediction of co-infection in MDA5 dermatomyositis  |b A rapid clinical assessment model 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.05.2025 
500 |a Date Revised 03.05.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2025 Elsevier Inc. All rights reserved. 
520 |a BACKGROUND: Patients with anti-melanoma differentiation-associated gene 5-positive dermatomyositis (MDA5 DM) are prone to infections, but there is a lack of rapid methods to assess infection risk, which greatly affects patient prognosis. This study aims to analyze the clinical features of MDA5 DM patients systematically and develop a predictive model for infections 
520 |a METHODS: Retrospective analysis was performed on clinical data from 118 hospitalized patients with MDA5 DM. According to the results of pathogen detection and clinical manifestations, the patients were divided into infected group and non-infected group. LASSO analysis and multivariate logistic regression were used to establish the prediction model of infection in MAD5 DM patients. The resulting model was visualized using a Nomogram. We used methods such as Receiver Operating Characteristic (ROC) curve analysis, Area Under the Curve (AUC) calculation to evaluate the model 
520 |a RESULT: The Cough, interstitial lung disease, moist rales, positive anti-RO-52, carcinoembryonic antigen, triglyceride, hydroxybutyrate dehydrogenase and erythrocyte sedimentation rate were significantly associated with infection risk in MDA5 DM patients. A prediction model was developed using these eight risk factors, achieving an AUC of 0.851 in determining co-infection status. Further analysis based on infection site and pathogen classification demonstrated strong discrimination performance of the model in identifying pulmonary infection (AUC: 0.844) and fungal infection (AUC: 0.822) 
520 |a CONCLUSION: This study aimed to develop a clinical prediction model and visualize it using Nomogram to assess the risk of infection in MDA5 DM. The model provides an effective tool for determining infection status in patients and serves as a reference for formulating clinical medication regimens 
650 4 |a Journal Article 
650 4 |a Anti-melanoma differentiation-associated gene 5-positive dermatomyositis (MDA5 DM) 
650 4 |a Infection 
650 4 |a Nomogram 
650 4 |a Prediction model 
650 7 |a Interferon-Induced Helicase, IFIH1  |2 NLM 
650 7 |a EC 3.6.4.13  |2 NLM 
650 7 |a IFIH1 protein, human  |2 NLM 
650 7 |a EC 3.6.1.-  |2 NLM 
700 1 |a Li, Yanhong  |e verfasserin  |4 aut 
700 1 |a Zhou, Yu  |e verfasserin  |4 aut 
700 1 |a Luo, Yubin  |e verfasserin  |4 aut 
700 1 |a Cheng, Lu  |e verfasserin  |4 aut 
700 1 |a Zhao, Jing  |e verfasserin  |4 aut 
700 1 |a Huang, Deying  |e verfasserin  |4 aut 
700 1 |a Ma, Ling  |e verfasserin  |4 aut 
700 1 |a Wu, Tong  |e verfasserin  |4 aut 
700 1 |a Liang, Xiuping  |e verfasserin  |4 aut 
700 1 |a Liao, Zehui  |e verfasserin  |4 aut 
700 1 |a Tan, Chunyu  |e verfasserin  |4 aut 
700 1 |a Liu, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Clinical immunology (Orlando, Fla.)  |d 1999  |g 272(2025) vom: 15. März, Seite 110431  |w (DE-627)NLM098196855  |x 1521-7035  |7 nnas 
773 1 8 |g volume:272  |g year:2025  |g day:15  |g month:03  |g pages:110431 
856 4 0 |u http://dx.doi.org/10.1016/j.clim.2025.110431  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 272  |j 2025  |b 15  |c 03  |h 110431