|
|
|
|
| LEADER |
01000caa a22002652c 4500 |
| 001 |
NLM383203597 |
| 003 |
DE-627 |
| 005 |
20250508054609.0 |
| 007 |
cr uuu---uuuuu |
| 008 |
250507s2025 xx |||||o 00| ||eng c |
| 024 |
7 |
|
|a 10.1002/adma.202414560
|2 doi
|
| 028 |
5 |
2 |
|a pubmed25n1333.xml
|
| 035 |
|
|
|a (DE-627)NLM383203597
|
| 035 |
|
|
|a (NLM)39838728
|
| 040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
| 041 |
|
|
|a eng
|
| 100 |
1 |
|
|a Yao, Jie
|e verfasserin
|4 aut
|
| 245 |
1 |
4 |
|a The First Molecular Ferroelectric Mott Insulator
|
| 264 |
|
1 |
|c 2025
|
| 336 |
|
|
|a Text
|b txt
|2 rdacontent
|
| 337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
| 338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
| 500 |
|
|
|a Date Revised 05.03.2025
|
| 500 |
|
|
|a published: Print-Electronic
|
| 500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
| 520 |
|
|
|a © 2025 Wiley‐VCH GmbH.
|
| 520 |
|
|
|a With the discovery of colossal magnetoresistance materials and high-temperature superconductors, Mott insulators can potentially undergo a transition from insulating state to metallic state. Here, in molecular ferroelectrics system, a Mott insulator of (C7H14N)3V12O30 has been first synthesized, which is a 2D organic-inorganic ferroelectric with composition of layered vanadium oxide and quinuclidine ring. Interestingly, accompanied by the ferroelectric phase transition, (C7H14N)3V12O30 changes sharply in conductivity. The occurrence of a Mott transition has been proven by electric transport measurements and theoretical calculations. This research has significantly expanded the applicative horizons of ferroelectric materials, and offering an ideal platform for the investigation of strongly correlated electron systems
|
| 650 |
|
4 |
|a Journal Article
|
| 650 |
|
4 |
|a Mott insulator
|
| 650 |
|
4 |
|a metal–insulator transition
|
| 650 |
|
4 |
|a molecular ferroelectrics
|
| 700 |
1 |
|
|a Sun, Wencong
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Guo, Jianfeng
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Feng, Zi-Jie
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Pan, Qiang
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Peng, Jin
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Cheng, Zhihai
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Dong, Shuai
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Xiong, Ren-Gen
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a You, Yu-Meng
|e verfasserin
|4 aut
|
| 773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 37(2025), 9 vom: 01. März, Seite e2414560
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
| 773 |
1 |
8 |
|g volume:37
|g year:2025
|g number:9
|g day:01
|g month:03
|g pages:e2414560
|
| 856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202414560
|3 Volltext
|
| 912 |
|
|
|a GBV_USEFLAG_A
|
| 912 |
|
|
|a SYSFLAG_A
|
| 912 |
|
|
|a GBV_NLM
|
| 912 |
|
|
|a GBV_ILN_350
|
| 951 |
|
|
|a AR
|
| 952 |
|
|
|d 37
|j 2025
|e 9
|b 01
|c 03
|h e2414560
|