Engineering Highly Aligned and Densely Populated Cardiac Muscle Bundles via Fibrin Remodeling in 3D-Printed Anisotropic Microfibrous Lattices

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 9 vom: 25. März, Seite e2419380
Auteur principal: Mao, Mao (Auteur)
Autres auteurs: Han, Kang, Gao, Jingyuan, Ren, Zhishuo, Zhang, Yabo, He, Jiankang, Li, Dichen
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article anisotropic microfibrous lattices cardiac tissue engineering cellular alignment electrohydrodynamic printing hydrogel remodeling Hydrogels Fibrin 9001-31-4
Description
Résumé:© 2025 Wiley‐VCH GmbH.
Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles. Compared to lattices with isolated pores, the engineered aligned cardiac tissues from neonatal rat cardiomyocytes exhibit improved electrophysiological properties and synchronous contractions. Using a multiseeding strategy, an equivalent cell seeding density of 8 × 107 cells mL-1, facilitating the formation of multicellular, vascularized cardiac structures with maintained tissue viability and integrity, is achieved. As a demonstration, human-induced pluripotent stem cell-derived cardiac tissues are engineered with progressive maturation and functional integration over time. These findings underscore the potential of InterPore microfibrous lattices for applications in cardiac tissue engineering, drug discovery, and therapeutic development
Description:Date Completed 01.05.2025
Date Revised 01.05.2025
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202419380