Continuous Polarizability-Based Separation of Lithium Iron Phosphate and Graphite Using a Dielectrophoretic Particle Separator

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - (2025) vom: 07. Jan.
1. Verfasser: Chen, Xiaolei (VerfasserIn)
Weitere Verfasser: Jiang, Hao, Du, Fei, Stolte, Stefan, Liu, Xiaomin, Wang, Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM382508858
003 DE-627
005 20250307034037.0
007 cr uuu---uuuuu
008 250307s2025 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.4c04505  |2 doi 
028 5 2 |a pubmed25n1274.xml 
035 |a (DE-627)NLM382508858 
035 |a (NLM)39764724 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Xiaolei  |e verfasserin  |4 aut 
245 1 0 |a Continuous Polarizability-Based Separation of Lithium Iron Phosphate and Graphite Using a Dielectrophoretic Particle Separator 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences. A custom-designed microparticle separator is developed for the continuous separation of LFP and graphite mixtures at high throughput. Additionally, a theoretical model incorporating both electric and flow fields is constructed to predict the DEP behavior of particle streams. The feasibility of selective separation is theoretically evaluated through numerical simulation of microparticle trajectories and binary separation within the proposed separator, and these results are experimentally validated with good agreement. Under a particle streamflow rate of 10.8 mL/min, both simulations and experiments demonstrate a separation efficiency of LFP higher than 80% at 100 V. Furthermore, the influence of operating parameters, such as the applied voltage, flow rate, and sheath-to-feed ratio, on optimal separation efficiency and particle purity is numerically investigated. The feasibility of the proposed separator for the potential separation of other lithium-metal-oxide-containing particle mixtures is also explored through numerical simulations. Overall, this study provides a theoretical foundation for the development of high-performance and sustainable LIB recovery processes with a low energy consumption 
650 4 |a Journal Article 
700 1 |a Jiang, Hao  |e verfasserin  |4 aut 
700 1 |a Du, Fei  |e verfasserin  |4 aut 
700 1 |a Stolte, Stefan  |e verfasserin  |4 aut 
700 1 |a Liu, Xiaomin  |e verfasserin  |4 aut 
700 1 |a Wang, Yan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g (2025) vom: 07. Jan.  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnas 
773 1 8 |g year:2025  |g day:07  |g month:01 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.4c04505  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |j 2025  |b 07  |c 01