Ultrafast Lithium-Ion Transport Engineered by Nanoconfinement Effect

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 06. Jan., Seite e2416266
1. Verfasser: Yang, Yahan (VerfasserIn)
Weitere Verfasser: Li, Zefeng, Yang, Zhilin, Zhang, Qiannan, Chen, Qian, Jiao, Yuying, Wang, Zixuan, Zhang, Xiaokun, Zhai, Pengbo, Sun, Zhimei, Xiang, Yong, Gong, Yongji
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D nanochannel ion transport nanoconfinement effect ultrahigh ionic conductivity
LEADER 01000naa a22002652 4500
001 NLM382462661
003 DE-627
005 20250106232807.0
007 cr uuu---uuuuu
008 250106s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202416266  |2 doi 
028 5 2 |a pubmed24n1655.xml 
035 |a (DE-627)NLM382462661 
035 |a (NLM)39760262 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Yahan  |e verfasserin  |4 aut 
245 1 0 |a Ultrafast Lithium-Ion Transport Engineered by Nanoconfinement Effect 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Amid the burgeoning demand for electrochemical energy storage and neuromorphic computing, fast ion transport behavior has attracted widespread attention at both fundamental and practical levels. Here, based on the nanoconfined channel of graphene oxide laminar membranes (GOLMs), the lithium ionic conductivity typically exceeding 102 mS cm-1 is realized, one to three orders of magnitude higher than traditional liquid or solid lithium-ion electrolyte. Specifically, the nanoconfined lithium hexafluorophosphate (LiPF6)-ethylene carbonate (EC)/ dimethyl carbonate (DMC) electrolyte demonstrates the ionic conductivity of 170 mS cm-1, outperforming the bulk counterpart by ≈16 fold. At the ultralow temperature of -60 °C, the nanoconfined electrolyte also maintains a practically useful conductivity of 11 mS cm-1. Furthermore, the in situ experimental and theoretical framework enables to attribute the enhanced ionic conductivity to the layer-by-layer cations and anions distribution induced by high surface charge and nanoconfinement effects in GO nanochannels. More importantly, integrating such rapid lithium-ion transport nanochannel into the LiFePO4 (LFP) cathode significantly improves the high-rate and long-cycle performance of lithium batteries. These results exhibit the convention-breaking ionic conductivity of nanoconfined electrolytes, inspiring the development of ultrafast ion diffusion pathways based on 2D nanoconfined channels for efficient energy storage applications 
650 4 |a Journal Article 
650 4 |a 2D nanochannel 
650 4 |a ion transport 
650 4 |a nanoconfinement effect 
650 4 |a ultrahigh ionic conductivity 
700 1 |a Li, Zefeng  |e verfasserin  |4 aut 
700 1 |a Yang, Zhilin  |e verfasserin  |4 aut 
700 1 |a Zhang, Qiannan  |e verfasserin  |4 aut 
700 1 |a Chen, Qian  |e verfasserin  |4 aut 
700 1 |a Jiao, Yuying  |e verfasserin  |4 aut 
700 1 |a Wang, Zixuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaokun  |e verfasserin  |4 aut 
700 1 |a Zhai, Pengbo  |e verfasserin  |4 aut 
700 1 |a Sun, Zhimei  |e verfasserin  |4 aut 
700 1 |a Xiang, Yong  |e verfasserin  |4 aut 
700 1 |a Gong, Yongji  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2025) vom: 06. Jan., Seite e2416266  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2025  |g day:06  |g month:01  |g pages:e2416266 
856 4 0 |u http://dx.doi.org/10.1002/adma.202416266  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 06  |c 01  |h e2416266