Dual-Phase Ligand Engineering Enables 18.21% FAPbI3 Quantum Dot Solar Cells

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 8 vom: 04. Feb., Seite e2417346
1. Verfasser: Li, Du (VerfasserIn)
Weitere Verfasser: Zhao, Chenyu, Zhang, Xuliang, Zhao, Xinyu, Huang, Hehe, Li, Huifeng, Li, Fangchao, Yuan, Jianyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article FAPbI3 quantum dot carrier transport dual‐site ligands perovskite solar cells stability
LEADER 01000caa a22002652c 4500
001 NLM38243417X
003 DE-627
005 20250508040739.0
007 cr uuu---uuuuu
008 250106s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202417346  |2 doi 
028 5 2 |a pubmed25n1325.xml 
035 |a (DE-627)NLM38243417X 
035 |a (NLM)39757444 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Du  |e verfasserin  |4 aut 
245 1 0 |a Dual-Phase Ligand Engineering Enables 18.21% FAPbI3 Quantum Dot Solar Cells 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.02.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Formamidinium lead triiodide (FAPbI3) perovskite quantum dot (PQD) are promising candidate for high-performing quantum dot photovoltaic due to its narrow bandgap, high ambient stability, and long carrier lifetime. However, the carrier transport blockage and nonradiative recombination loss, originating from the high-dielectric ligands and defects/trap states on the FAPbI3 PQD surface, significantly limit the efficiency and stability of its photovoltaic performance. In this work, through exploring dual-site molecular ligands, namely 2-thiophenemethylammonium iodide (2-TM) and 2-thiopheneethylammonium iodide (2-TE), a dual-phase synergistic ligand exchange (DSLE) protocol consisting of both solution-phase and solid-state ligand engineering is demonstrated. The DSLE strategy effectively replaces the native long insulating ligands and simultaneously passivate surface defects in hybrid FAPbI3 PQDs, leading to enhanced electronic coupling for efficient charge transport. Consequently, the FAPbI3 PQD solar cell based on DSLE strategy achieves a notable enhanced efficiency from 15.43% to 17.79% (2-TM) and 18.21% (2-TE), respectively. Besides, both 2-TM and 2-TE engineered devices exhibit enhanced stability, maintaining over 80% of its initial efficiency after aging in ambient environment (20-30% humidity, 25 °C) for over 1400 h. It believes these findings will provide a new protocol to precisely regulate the surface chemistry of hybrid PQDs toward high-performance optoelectronic applications 
650 4 |a Journal Article 
650 4 |a FAPbI3 quantum dot 
650 4 |a carrier transport 
650 4 |a dual‐site ligands 
650 4 |a perovskite solar cells 
650 4 |a stability 
700 1 |a Zhao, Chenyu  |e verfasserin  |4 aut 
700 1 |a Zhang, Xuliang  |e verfasserin  |4 aut 
700 1 |a Zhao, Xinyu  |e verfasserin  |4 aut 
700 1 |a Huang, Hehe  |e verfasserin  |4 aut 
700 1 |a Li, Huifeng  |e verfasserin  |4 aut 
700 1 |a Li, Fangchao  |e verfasserin  |4 aut 
700 1 |a Yuan, Jianyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 8 vom: 04. Feb., Seite e2417346  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:8  |g day:04  |g month:02  |g pages:e2417346 
856 4 0 |u http://dx.doi.org/10.1002/adma.202417346  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 8  |b 04  |c 02  |h e2417346